structure.py
9.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from operator import itemgetter as ig
from math import floor
class RSSVector():
distances = []
def __init__(self, n1, n2, n3, n4):
'''
:param n1: AP1 RSSI
:param n2: AP2 RSSI
:param n3: AP3 RSSI
:param n4: AP4 RSSI
'''
self.n1 = n1
self.n2 = n2
self.n3 = n3
self.n4 = n4
def __eq__(self, v2):
return True if v2.n1 == self.n1 and v2.n2 == self.n2 \
and v2.n3 == self.n3 and v2.n4 == self.n4 else False
class Location():
def __init__(self, x, y, z=0):
self.x = x
self.y = y
self.z = z
def __eq__(self, loc2):
return bool(self.x == loc2.x and self.y == loc2.y and self.z == loc2.z)
def __mul__(self, multiplier):
returnValue = Location(self.x, self.y, self.z)
returnValue.x *= multiplier
returnValue.y *= multiplier
returnValue.z *= multiplier
return returnValue
def __rmul__(self, multiplier):
return self * multiplier
def __add__(self, added):
returnValue = Location(self.x, self.y, self.z)
returnValue.x += added.x
returnValue.y += added.y
returnValue.z += added.z
return returnValue
def __isub__(self, value):
return self + -1 * value
def __itruediv__(self, divider):
returnValue = Location(self.x, self.y, self.z)
returnValue.x /= divider
returnValue.y /= divider
returnValue.z /= divider
return returnValue
def toString(self):
return "(" + str(self.x) + " ; " + str(self.y) + " ; " + str(self.z) + ")"
def getPositionInArray(self, arraySize=3):
'''
Returns the unique ID of a fingerprint given its location
:param arraySize: (Optional) dimension of the array
'''
temp = Location(self.x, self.y)
temp /= 2
temp -= Location(1,1)
return floor((temp.x * arraySize + temp.y)/2)
@staticmethod
def fromID(origin_id, arraySize=3):
'''
Returns the Location of a fingerprint of known ID
:param: ID to resolve
:param arraySize: (Optional) dimension of the array
'''
origin_id -= 1
y=origin_id % 3
x=floor((origin_id - y) / 3)
returnValue = Location(x, y)
returnValue *= 2
returnValue += Location(1,1)
returnValue *= 2
return returnValue
class Cell():
def __init__(self, v_, loc):
'''
:param v_: RSSI vector of the fingerprint
:param loc: Location of the fingerprint
'''
self.v = v_
self.location = loc
class MarkovValue():
def __init__(self, nb=0, percentage=0.0):
'''
:param nb: Counter of incoming/outgoing movements
:param percentage: probability of being the next movement [0.0 , 1.0]
'''
self.nb = nb
self.percentage = percentage # Probability of Markov model (100% <=> 1.0)
class MarkovModel():
def __init__(self,cells):
'''
:param cells: an array containing all the cells of the model
'''
self.MarkovValues = [] #table of the coefficients of the Markov Model
self.cells = cells
self.previousCell = 0
for i in range (0, 11):
self.MarkovValues.append([])
for _ in range (0, 10):
self.MarkovValues[i].append(MarkovValue())
self.MarkovValues[10][0].nb = 1 #initial position sigma increment
def moveToCellID(self, nextCell):
'''
Registers a movement from the current cell to a specified location by its ID
:param nextCell: The ID of the new location
'''
self.MarkovValues[nextCell][self.previousCell].nb += 1
self.MarkovValues[10][nextCell].nb += 1
self.refreshPercentage(self.previousCell)
self.previousCell = nextCell
def moveToCell(self, nextCell):
'''
Registers a movement from the current cell to another based on the Location of its fingerprint
:param nextCell: The location of the new cell
'''
self.moveToCellID(nextCell.location.getPositionInArray()+1)
def refreshPercentage(self, col):
'''
Refreshes the probabilities of a column after a counter is changed
Needed after every change to the nb field
:param col: the # of the column to refresh
'''
if self.MarkovValues[10][col].nb:
for k in range(0,10):
self.MarkovValues[k][col].percentage = self.MarkovValues[k][col].nb / self.MarkovValues[10][col].nb
def printValues(self):
'''
Prints the counters of the Markov Model in a human-readable table form
'''
print("\t? \t1 \t2 \t3\t4 \t5 \t6 \t7 \t8 \t9")
print("---------------------------------------------------------------------------------", end='')
for i in range (0, 11):
print("\r\n", end='')
if i == 10 or i == 1:
print("---------------------------------------------------------------------------------\r\n",end='')
print(i, end='\t')
for k in range (0,10):
if not self.MarkovValues[i][k].nb:
print("\033[0;31;40m", end='')
else:
print("\033[0;32;40m", end='')
print(self.MarkovValues[i][k].nb, end='\t')
print("\033[1;37;40m", end='')
print("")
def printPercentages(self):
'''
Prints the percentages of the Markov Model in a human-readable table form
'''
print("\t? \t1 \t2 \t3\t4 \t5 \t6 \t7 \t8 \t9")
print("---------------------------------------------------------------------------------", end='')
for i in range (1, 10):
print("\r\n", i, end='\t')
for k in range (0,10):
if not self.MarkovValues[i][k].percentage:
print("\033[0;31;40m", end='')
elif k != self.previousCell or self.getMostLikely() != i:
print("\033[0;32;40m", end='')
else:
print("\033[4;30;47m", end='')
print(str(floor(self.MarkovValues[i][k].percentage * 100)), end='%')
print("\033[1;37;40m\t", end='')
print("")
def getMostLikely(self):
'''
Returns the ID of the most likely next location
Convert to coordinates using the Location.fromID() function
:return: ID of the most likely next location
'''
return self.getMostLikelyFromCell(self.previousCell)
def getMostLikelyFromCell(self, currentCell):
'''
Returns the ID of the most likely next location with a given previous cell ID
Typically called by getMostLikely() function
Convert to coordinates using the Location.fromID() function
:param currentCell: ID of the last cell
:return: ID of the most likely next location
'''
max_value=0
max_id=0
for k in range(1,10):
if self.MarkovValues[k][currentCell].nb > max_value:
max_value = self.MarkovValues[k][currentCell].nb
max_id = k
return max_id
def path(self, locationIDs):
'''
shorthand for defining multiple movements betweens cells
:param LocationIDs: Array containing the different cell IDs in order of movement
'''
for loc in locationIDs:
self.moveToCellID(loc)
def newCell(n1, n2, n3, n4, l1, l2):
'''
Shorthand for Cell creation
:param n1: AP1 RSSI
:param n2: AP2 RSSI
:param n3: AP3 RSSI
:param n4: AP4 RSSI
:param L1: x coordinate of the fingerprinting location
:param L2: y coordinate of the fingerprinting location
:return: Cell with given characteristics
'''
return Cell(RSSVector(n1,n2,n3,n4), Location(l1,l2))
def KNeighbors(fingerprints, sample):
'''
Returns the 4 closest cells to the given sample and fills sample distance data
:param fingerprints: 2D array of all the cells
:param sample: Mobile terminal sample
:return: the 4 nearest cells
'''
distances, neighbours = [], []
for row in fingerprints:
for currentItem in row:
dist = abs(currentItem.v.n1 - sample.n1) \
+ abs(currentItem.v.n2 - sample.n2) \
+ abs(currentItem.v.n3 - sample.n3) \
+ abs(currentItem.v.n4 - sample.n4)
distances.append((dist, currentItem))
distances = sorted(distances, key=ig(0))
for k in range (0,4):
neighbours.append(distances[k][1])
sample.distances.append(distances[k][0])
return neighbours
def resolve_barycenter(nC, d):
'''
Returns the weighted barycenter of the 4 neighbouring cells
:param nC: (neighborCells) Array containing the 4 closest cells
:param d: distances of the sample of the mobile terminal
:return: Estimated location of the mobile terminal (return None if error)
'''
return None if len(nC) != 4 or len(d) != 4 else \
1 / (1+d[0]/d[1]+d[0]/d[2]+d[0]/d[3])*nC[0].location \
+ 1 / (1+d[1]/d[0]+d[1]/d[2]+d[1]/d[3])*nC[1].location \
+ 1 / (1+d[2]/d[1]+d[2]/d[0]+d[2]/d[3])*nC[2].location \
+ 1 / (1+d[3]/d[1]+d[3]/d[2]+d[3]/d[0])*nC[3].location