FreematicsMEMS.cpp 58.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/*************************************************************************
* Freematics MEMS motion sensor helper classes
* Distributed under BSD license
* Visit https://freematics.com for more information
* (C)2016-2020 Stanley Huang <stanley@freematics.com.au>
*************************************************************************/

#include "FreematicsMEMS.h"
#include <driver/i2c.h>
#include "utility/ICM_20948_REGISTERS.h"
#include "utility/AK09916_REGISTERS.h"

#define WRITE_BIT         I2C_MASTER_WRITE /*!< I2C master write */
#define READ_BIT          I2C_MASTER_READ  /*!< I2C master read */
#define ACK_CHECK_EN      0x1              /*!< I2C master will check ack from slave*/
#define ACK_CHECK_DIS     0x0              /*!< I2C master will not check ack from slave */
#define ACK_VAL           (i2c_ack_type_t)0x0              /*!< I2C ack value */
#define NACK_VAL          (i2c_ack_type_t)0x1 /*!< I2C nack value */

// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
// device orientation
void CQuaterion::MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
{
  uint32_t now = millis();
  deltat = ((float)(now - lastUpdate)/1000.0f); // set integration time by time elapsed since last filter update
  lastUpdate = now;

  float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
  float norm;
  float hx, hy, _2bx, _2bz;
  float s1, s2, s3, s4;
  float qDot1, qDot2, qDot3, qDot4;

  // Auxiliary variables to avoid repeated arithmetic
  float _2q1mx;
  float _2q1my;
  float _2q1mz;
  float _2q2mx;
  float _4bx;
  float _4bz;
  float _2q1 = 2.0f * q1;
  float _2q2 = 2.0f * q2;
  float _2q3 = 2.0f * q3;
  float _2q4 = 2.0f * q4;
  float _2q1q3 = 2.0f * q1 * q3;
  float _2q3q4 = 2.0f * q3 * q4;
  float q1q1 = q1 * q1;
  float q1q2 = q1 * q2;
  float q1q3 = q1 * q3;
  float q1q4 = q1 * q4;
  float q2q2 = q2 * q2;
  float q2q3 = q2 * q3;
  float q2q4 = q2 * q4;
  float q3q3 = q3 * q3;
  float q3q4 = q3 * q4;
  float q4q4 = q4 * q4;

  // Normalise accelerometer measurement
  norm = sqrtf(ax * ax + ay * ay + az * az);
  if (norm == 0.0f) return; // handle NaN
  norm = 1.0f/norm;
  ax *= norm;
  ay *= norm;
  az *= norm;

  // Normalise magnetometer measurement
  norm = sqrtf(mx * mx + my * my + mz * mz);
  if (norm == 0.0f) return; // handle NaN
  norm = 1.0f/norm;
  mx *= norm;
  my *= norm;
  mz *= norm;

  // Reference direction of Earth's magnetic field
  _2q1mx = 2.0f * q1 * mx;
  _2q1my = 2.0f * q1 * my;
  _2q1mz = 2.0f * q1 * mz;
  _2q2mx = 2.0f * q2 * mx;
  hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
  hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
  _2bx = sqrtf(hx * hx + hy * hy);
  _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
  _4bx = 2.0f * _2bx;
  _4bz = 2.0f * _2bz;

  // Gradient decent algorithm corrective step
  s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
  s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
  s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
  s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
  norm = sqrtf(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
  norm = 1.0f/norm;
  s1 *= norm;
  s2 *= norm;
  s3 *= norm;
  s4 *= norm;

  // Compute rate of change of quaternion
  qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
  qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
  qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
  qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;

  // Integrate to yield quaternion
  q1 += qDot1 * deltat;
  q2 += qDot2 * deltat;
  q3 += qDot3 * deltat;
  q4 += qDot4 * deltat;
  norm = sqrtf(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
  norm = 1.0f/norm;
  q[0] = q1 * norm;
  q[1] = q2 * norm;
  q[2] = q3 * norm;
  q[3] = q4 * norm;
}

void CQuaterion::getOrientation(ORIENTATION* ori)
{
     ori->yaw  = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]) * 180.0f / PI;
     ori->pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])) * 180.0f / PI;
     ori->roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]) * 180.0f / PI;
}

/*******************************************************************************
  Base I2C MEMS class
*******************************************************************************/

#define WRITE_BIT         I2C_MASTER_WRITE /*!< I2C master write */
#define READ_BIT          I2C_MASTER_READ  /*!< I2C master read */
#define ACK_CHECK_EN      0x1              /*!< I2C master will check ack from slave*/
#define ACK_CHECK_DIS     0x0              /*!< I2C master will not check ack from slave */
#define ACK_VAL           (i2c_ack_type_t)0x0              /*!< I2C ack value */
#define NACK_VAL          (i2c_ack_type_t)0x1 /*!< I2C nack value */

bool MEMS_I2C::initI2C(unsigned long clock)
{
  i2c_port_t i2c_master_port = I2C_NUM_0;
  i2c_config_t conf;
  conf.mode = I2C_MODE_MASTER;
  conf.sda_io_num = (gpio_num_t)21;
  conf.sda_pullup_en = GPIO_PULLUP_ENABLE;
  conf.scl_io_num = (gpio_num_t)22;
  conf.scl_pullup_en = GPIO_PULLUP_ENABLE;
  conf.master.clk_speed = clock;
  return i2c_param_config(i2c_master_port, &conf) == ESP_OK &&
    i2c_driver_install(i2c_master_port, conf.mode, 0, 0, 0) == ESP_OK;
}

void MEMS_I2C::uninitI2C()
{
  i2c_driver_delete((i2c_port_t)I2C_NUM_0);
}
/*******************************************************************************
  MPU-9250 class functions 
*******************************************************************************/

//==============================================================================
//====== Set of useful function to access acceleration. gyroscope, magnetometer,
//====== and temperature data
//==============================================================================
void MPU9250::readAccelData(int16_t * destination)
{
  uint8_t rawData[6];   // x/y/z accel register data stored here
  readBytes(ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
  destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ;  // Turn the MSB and LSB into a signed 16-bit value
  destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
  destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}


void MPU9250::readGyroData(int16_t * destination)
{
  uint8_t rawData[6];  // x/y/z gyro register data stored here
  readBytes(GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
  destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ;  // Turn the MSB and LSB into a signed 16-bit value
  destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
  destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}

void MPU9250::readMagData(int16_t * destination)
{
  if(readByteAK(AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
    uint8_t rawData[7];  // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
    readBytesAK(AK8963_XOUT_L, 7, rawData);  // Read the six raw data and ST2 registers sequentially into data array
    uint8_t c = rawData[6]; // End data read by reading ST2 register
    if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
      destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ;  // Turn the MSB and LSB into a signed 16-bit value
      destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;  // Data stored as little Endian
      destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
   }
 }
}

int16_t MPU9250::readTempData()
{
  uint8_t rawData[2];  // x/y/z gyro register data stored here
  readBytes(TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array
  return ((int16_t)rawData[0] << 8) | rawData[1];  // Turn the MSB and LSB into a 16-bit value
}

bool MPU9250::initAK8963(float * destination)
{
  if (readByteAK(WHO_AM_I_AK8963) != 0x48) {
      return false;
  }

  // First extract the factory calibration for each magnetometer axis
  uint8_t rawData[3];  // x/y/z gyro calibration data stored here
  writeByteAK(AK8963_CNTL, 0x00); // Power down magnetometer
  delay(10);
  writeByteAK(AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
  delay(10);
  // Read the x-, y-, and z-axis calibration values
  /*
  if (!readBytesAK(AK8963_ASAX, 3, &rawData[0], 3000)) {
    return false;
  }
  */
  rawData[0] = readByteAK(AK8963_ASAX);
  rawData[1] = readByteAK(AK8963_ASAY);
  rawData[2] = readByteAK(AK8963_ASAZ);
  destination[0] =  (float)(rawData[0] - 128)/256. + 1.;   // Return x-axis sensitivity adjustment values, etc.
  destination[1] =  (float)(rawData[1] - 128)/256. + 1.;
  destination[2] =  (float)(rawData[2] - 128)/256. + 1.;
  writeByteAK(AK8963_CNTL, 0x00); // Power down magnetometer
  delay(10);
  // Configure the magnetometer for continuous read and highest resolution
  // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
  // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
  writeByteAK(AK8963_CNTL, MFS_16BITS << 4 | Mmode); // Set magnetometer data resolution and sample ODR
  delay(10);
  return true;
}

// Function which accumulates gyro and accelerometer data after device
// initialization. It calculates the average of the at-rest readings and then
// loads the resulting offsets into accelerometer and gyro bias registers.
void MPU9250::calibrateMPU9250(float * gyroBias, float * accelBias)
{
  uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
  uint16_t ii, packet_count, fifo_count;
  int32_t gyro_bias[3]  = {0, 0, 0}, accel_bias[3] = {0, 0, 0};

  // reset device
  // Write a one to bit 7 reset bit; toggle reset device
  writeByte(PWR_MGMT_1, 0x80);
  delay(100);

 // get stable time source; Auto select clock source to be PLL gyroscope
 // reference if ready else use the internal oscillator, bits 2:0 = 001
  writeByte(PWR_MGMT_1, 0x01);
  writeByte(PWR_MGMT_2, 0x00);
  delay(200);

  // Configure device for bias calculation
  writeByte(INT_ENABLE, 0x00);   // Disable all interrupts
  writeByte(FIFO_EN, 0x00);      // Disable FIFO
  writeByte(PWR_MGMT_1, 0x00);   // Turn on internal clock source
  writeByte(I2C_MST_CTRL, 0x00); // Disable master
  writeByte(USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
  writeByte(USER_CTRL, 0x2C);    // Reset FIFO and DMP
  delay(15);

// Configure MPU6050 gyro and accelerometer for bias calculation
  writeByte(CONFIG, 0x01);      // Set low-pass filter to 188 Hz
  writeByte(SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
  writeByte(GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
  writeByte(ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity

  uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
  uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g

    // Configure FIFO to capture accelerometer and gyro data for bias calculation
  writeByte(USER_CTRL, 0x40);   // Enable FIFO
  writeByte(FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO  (max size 512 bytes in MPU-9150)
  delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes

// At end of sample accumulation, turn off FIFO sensor read
  writeByte(FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
  readBytes(FIFO_COUNTH, 2, &data[0]); // read FIFO sample count

  fifo_count = ((uint16_t)data[0] << 8) | data[1];
  packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging

  for (ii = 0; ii < packet_count; ii++)
  {
    int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
    readBytes(FIFO_R_W, 12, &data[0]); // read data for averaging
    accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  );  // Form signed 16-bit integer for each sample in FIFO
    accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  );
    accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  );
    gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  );
    gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  );
    gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]);

    accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
    accel_bias[1] += (int32_t) accel_temp[1];
    accel_bias[2] += (int32_t) accel_temp[2];
    gyro_bias[0]  += (int32_t) gyro_temp[0];
    gyro_bias[1]  += (int32_t) gyro_temp[1];
    gyro_bias[2]  += (int32_t) gyro_temp[2];
  }
  accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
  accel_bias[1] /= (int32_t) packet_count;
  accel_bias[2] /= (int32_t) packet_count;
  gyro_bias[0]  /= (int32_t) packet_count;
  gyro_bias[1]  /= (int32_t) packet_count;
  gyro_bias[2]  /= (int32_t) packet_count;

  if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
  else {accel_bias[2] += (int32_t) accelsensitivity;}

// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
  data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
  data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
  data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
  data[3] = (-gyro_bias[1]/4)       & 0xFF;
  data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
  data[5] = (-gyro_bias[2]/4)       & 0xFF;

// Push gyro biases to hardware registers
  writeByte(XG_OFFSET_H, data[0]);
  writeByte(XG_OFFSET_L, data[1]);
  writeByte(YG_OFFSET_H, data[2]);
  writeByte(YG_OFFSET_L, data[3]);
  writeByte(ZG_OFFSET_H, data[4]);
  writeByte(ZG_OFFSET_L, data[5]);

// Output scaled gyro biases for display in the main program
  gyroBias[0] = (float) gyro_bias[0]/(float) gyrosensitivity;
  gyroBias[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
  gyroBias[2] = (float) gyro_bias[2]/(float) gyrosensitivity;

// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.

  int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
  readBytes(XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
  accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
  readBytes(YA_OFFSET_H, 2, &data[0]);
  accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
  readBytes(ZA_OFFSET_H, 2, &data[0]);
  accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]);

  uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
  uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis

  for(ii = 0; ii < 3; ii++) {
    if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
  }

  // Construct total accelerometer bias, including calculated average accelerometer bias from above
  accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
  accel_bias_reg[1] -= (accel_bias[1]/8);
  accel_bias_reg[2] -= (accel_bias[2]/8);

  data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
  data[1] = (accel_bias_reg[0])      & 0xFF;
  data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
  data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
  data[3] = (accel_bias_reg[1])      & 0xFF;
  data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
  data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
  data[5] = (accel_bias_reg[2])      & 0xFF;
  data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers

// Apparently this is not working for the acceleration biases in the MPU-9250
// Are we handling the temperature correction bit properly?
// Push accelerometer biases to hardware registers
  writeByte(XA_OFFSET_H, data[0]);
  writeByte(XA_OFFSET_L, data[1]);
  writeByte(YA_OFFSET_H, data[2]);
  writeByte(YA_OFFSET_L, data[3]);
  writeByte(ZA_OFFSET_H, data[4]);
  writeByte(ZA_OFFSET_L, data[5]);

// Output scaled accelerometer biases for display in the main program
   accelBias[0] = (float)accel_bias[0]/(float)accelsensitivity;
   accelBias[1] = (float)accel_bias[1]/(float)accelsensitivity;
   accelBias[2] = (float)accel_bias[2]/(float)accelsensitivity;
}


// Accelerometer and gyroscope self test; check calibration wrt factory settings
void MPU9250::MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
  uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
  uint8_t selfTest[6];
  int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
  float factoryTrim[6];
  uint8_t FS = 0;

  writeByte(SMPLRT_DIV, 0x00);    // Set gyro sample rate to 1 kHz
  writeByte(CONFIG, 0x02);        // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
  writeByte(GYRO_CONFIG, 1<<FS);  // Set full scale range for the gyro to 250 dps
  writeByte(ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
  writeByte(ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g

  for( int ii = 0; ii < 200; ii++) {  // get average current values of gyro and acclerometer

    readBytes(ACCEL_XOUT_H, 6, &rawData[0]);        // Read the six raw data registers into data array
    aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
    aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
    aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;

    readBytes(GYRO_XOUT_H, 6, &rawData[0]);       // Read the six raw data registers sequentially into data array
    gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
    gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
    gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
  }

  for (int ii =0; ii < 3; ii++) {  // Get average of 200 values and store as average current readings
    aAvg[ii] /= 200;
    gAvg[ii] /= 200;
  }

// Configure the accelerometer for self-test
  writeByte(ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
  writeByte(GYRO_CONFIG,  0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
  delay(25);  // Delay a while to let the device stabilize

  for( int ii = 0; ii < 200; ii++) {  // get average self-test values of gyro and acclerometer

    readBytes(ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
    aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
    aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
    aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;

    readBytes(GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
    gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
    gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
    gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
  }

  for (int ii =0; ii < 3; ii++) {  // Get average of 200 values and store as average self-test readings
    aSTAvg[ii] /= 200;
    gSTAvg[ii] /= 200;
  }

  // Configure the gyro and accelerometer for normal operation
  writeByte(ACCEL_CONFIG, 0x00);
  writeByte(GYRO_CONFIG,  0x00);
  delay(25);  // Delay a while to let the device stabilize

  // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
  selfTest[0] = readByte(SELF_TEST_X_ACCEL); // X-axis accel self-test results
  selfTest[1] = readByte(SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
  selfTest[2] = readByte(SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
  selfTest[3] = readByte(SELF_TEST_X_GYRO);  // X-axis gyro self-test results
  selfTest[4] = readByte(SELF_TEST_Y_GYRO);  // Y-axis gyro self-test results
  selfTest[5] = readByte(SELF_TEST_Z_GYRO);  // Z-axis gyro self-test results

  // Retrieve factory self-test value from self-test code reads
  factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
  factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
  factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
  factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
  factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
  factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation

 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
 // To get percent, must multiply by 100
  for (int i = 0; i < 3; i++) {
    destination[i]   = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i];   // Report percent differences
    destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
  }
}

void MPU9250::writeByte(uint8_t subAddress, uint8_t data)
{
  i2c_cmd_handle_t cmd = i2c_cmd_link_create();
  i2c_master_start(cmd);
  i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_EN);
  // write sub-address and data
  uint8_t buf[2] = {subAddress, data};
  i2c_master_write(cmd, buf, sizeof(buf), ACK_CHECK_EN);
  i2c_master_stop(cmd);
  i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
  i2c_cmd_link_delete(cmd);
}

uint8_t MPU9250::readByte(uint8_t subAddress)
{
  // write sub-address
  i2c_cmd_handle_t cmd = i2c_cmd_link_create();
  i2c_master_start(cmd);
  i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
  i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
  i2c_master_stop(cmd);
  i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
  i2c_cmd_link_delete(cmd);
  // read data
  uint8_t data = 0;
  cmd = i2c_cmd_link_create();
  i2c_master_start(cmd);
  i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
  i2c_master_read_byte(cmd, &data, NACK_VAL);
  i2c_master_stop(cmd);
  i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
  i2c_cmd_link_delete(cmd);
  return data;
}

bool MPU9250::readBytes(uint8_t subAddress, uint8_t count, uint8_t * dest)
{
  // write sub-address
  i2c_cmd_handle_t cmd = i2c_cmd_link_create();
  i2c_master_start(cmd);
  i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
  i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
  i2c_master_stop(cmd);
  esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
  i2c_cmd_link_delete(cmd);
  if (ret != ESP_OK) return false;
  // read data
  cmd = i2c_cmd_link_create();
  i2c_master_start(cmd);
  i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
  if (count > 1) {
      i2c_master_read(cmd, dest, count - 1, ACK_VAL);
  }
  i2c_master_read_byte(cmd, dest + count - 1, NACK_VAL);
  i2c_master_stop(cmd);
  ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
  i2c_cmd_link_delete(cmd);
  return ret == ESP_OK;
}

void MPU9250::writeByteAK(uint8_t subAddress, uint8_t data)
{
  i2c_cmd_handle_t cmd = i2c_cmd_link_create();
  i2c_master_start(cmd);
  i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_EN);
  // write sub-address and data
  uint8_t buf[2] = {subAddress, data};
  i2c_master_write(cmd, buf, sizeof(buf), ACK_CHECK_EN);
  i2c_master_stop(cmd);
  i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
  i2c_cmd_link_delete(cmd);
}

uint8_t MPU9250::readByteAK(uint8_t subAddress)
{
  // write sub-address
  i2c_cmd_handle_t cmd = i2c_cmd_link_create();
  i2c_master_start(cmd);
  i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
  i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
  i2c_master_stop(cmd);
  i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
  i2c_cmd_link_delete(cmd);
  // read data
  uint8_t data = 0;
  cmd = i2c_cmd_link_create();
  i2c_master_start(cmd);
  i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
  i2c_master_read_byte(cmd, &data, NACK_VAL);
  i2c_master_stop(cmd);
  i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
  i2c_cmd_link_delete(cmd);
  return data;
}

bool MPU9250::readBytesAK(uint8_t subAddress, uint8_t count, uint8_t * dest)
{
  // write sub-address
  i2c_cmd_handle_t cmd = i2c_cmd_link_create();
  i2c_master_start(cmd);
  i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
  i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
  i2c_master_stop(cmd);
  esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
  i2c_cmd_link_delete(cmd);
  if (ret != ESP_OK) return false;
  // read data
  cmd = i2c_cmd_link_create();
  i2c_master_start(cmd);
  i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
  if (count > 1) {
      i2c_master_read(cmd, dest, count - 1, ACK_VAL);
  }
  i2c_master_read_byte(cmd, dest + count - 1, NACK_VAL);
  i2c_master_stop(cmd);
  ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
  i2c_cmd_link_delete(cmd);
  return ret == ESP_OK;
}

void MPU9250::init()
{
 // wake up device
  writeByte(PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
  delay(100); // Wait for all registers to reset

 // get stable time source
  writeByte(PWR_MGMT_1, 0x01);  // Auto select clock source to be PLL gyroscope reference if ready else
  delay(200);

 // Configure Gyro and Thermometer
 // Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively;
 // minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot
 // be higher than 1 / 0.0059 = 170 Hz
 // DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both
 // With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz
  writeByte(CONFIG, 0x03);

 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
  writeByte(SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; a rate consistent with the filter update rate
                                    // determined inset in CONFIG above

 // Set gyroscope full scale range
 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
  uint8_t c = readByte(GYRO_CONFIG); // get current GYRO_CONFIG register value
 // c = c & ~0xE0; // Clear self-test bits [7:5]
  c = c & ~0x02; // Clear Fchoice bits [1:0]
  c = c & ~0x18; // Clear AFS bits [4:3]
  c = c | Gscale << 3; // Set full scale range for the gyro
 // c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
  writeByte(GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register

 // Set accelerometer full-scale range configuration
  c = readByte(ACCEL_CONFIG); // get current ACCEL_CONFIG register value
 // c = c & ~0xE0; // Clear self-test bits [7:5]
  c = c & ~0x18;  // Clear AFS bits [4:3]
  c = c | Ascale << 3; // Set full scale range for the accelerometer
  writeByte(ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value

 // Set accelerometer sample rate configuration
 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
  c = readByte(ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
  c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
  c = c | 0x03;  // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
  writeByte(ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting

  // Configure Interrupts and Bypass Enable
  // Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared,
  // clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips
  // can join the I2C bus and all can be controlled by the Arduino as master
   writeByte(INT_PIN_CFG, 0x22);
   writeByte(INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
   delay(100);

}

byte MPU9250::begin(bool fusion)
{
  if (!initI2C(100000)) return 0;
  byte ret = 0;
  for (byte attempt = 0; attempt < 2; attempt++) {
    //float SelfTest[6];
    //MPU9250SelfTest(SelfTest);
    byte c = readByte(WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
    if (c != 0x68 && c != 0x71) continue;
    calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
    init();
    if (c == 0x71 && initAK8963(magCalibration))
      ret = 2;
    else
      ret = 1;
    break;
  }
  if (ret && fusion && !quaterion) {
    quaterion = new CQuaterion;
  }
  return ret;
}

bool MPU9250::read(float* acc, float* gyr, float* mag, float* temp, ORIENTATION* ori)
{
  if (acc) {
    readAccelData(accelCount);
    acc[0] = (float)accelCount[0]*aRes; // - accelBias[0];  // get actual g value, this depends on scale being set
    acc[1] = (float)accelCount[1]*aRes; // - accelBias[1];
    acc[2] = (float)accelCount[2]*aRes; // - accelBias[2];
  }
  if (gyr) {
    readGyroData(gyroCount);
    gyr[0] = (float)gyroCount[0]*gRes;  // get actual gyro value, this depends on scale being set
    gyr[1] = (float)gyroCount[1]*gRes;
    gyr[2] = (float)gyroCount[2]*gRes;
  }
  if (mag) {
    float magbias[3];
    magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
    magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
    magbias[2] = +125.;  // User environmental x-axis correction in milliGauss

    // Calculate the magnetometer values in milliGauss
    // Include factory calibration per data sheet and user environmental corrections
    readMagData(magCount);
    mag[0] = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
    mag[1] = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
    mag[2] = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
  }
  if (temp) {
    int t = readTempData();
    *temp = (float)t / 333.87 + 21;
  }

  if (quaterion && acc && gyr && mag) {
    quaterion->MadgwickQuaternionUpdate(acc[0], acc[1], acc[2], gyr[0]*PI/180.0f, gyr[1]*PI/180.0f, gyr[2]*PI/180.0f,  mag[0],  mag[1], mag[2]);
    quaterion->getOrientation(ori);
  }
  return true;
}

/*******************************************************************************
  ICM-20948 class functions 
*******************************************************************************/

// serif functions for the I2C and SPI classes
ICM_20948_Status_e ICM_20948_write_I2C(uint8_t reg, uint8_t* data, uint32_t len, void* user){
    if(user == NULL){ return ICM_20948_Stat_ParamErr; }
    uint8_t addr = ((ICM_20948_I2C*)user)->_addr;

    i2c_cmd_handle_t cmd = i2c_cmd_link_create();
    i2c_master_start(cmd);
    i2c_master_write_byte(cmd, ( addr << 1 ) | WRITE_BIT, ACK_CHECK_EN);
    i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
    i2c_master_write(cmd, data, len, ACK_CHECK_DIS);
    i2c_master_stop(cmd);
    esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
    i2c_cmd_link_delete(cmd);
    return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_Err;
}

ICM_20948_Status_e ICM_20948_read_I2C(uint8_t reg, uint8_t* buff, uint32_t len, void* user){
    if(user == NULL){ return ICM_20948_Stat_ParamErr; }
    uint8_t addr = ((ICM_20948_I2C*)user)->_addr;

    // write sub-address
    i2c_cmd_handle_t cmd = i2c_cmd_link_create();
    i2c_master_start(cmd);
    i2c_master_write_byte(cmd, ( addr << 1 ) | WRITE_BIT, ACK_CHECK_EN);
    i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
    i2c_master_stop(cmd);
    esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
    i2c_cmd_link_delete(cmd);
    if (ret != ESP_OK) return ICM_20948_Stat_Err;
    // read data
    cmd = i2c_cmd_link_create();
    i2c_master_start(cmd);
    i2c_master_write_byte(cmd, ( addr << 1 ) | READ_BIT, ACK_CHECK_EN);
    if (len > 1) {
      i2c_master_read(cmd, buff, len - 1, ACK_VAL);
    }
    i2c_master_read_byte(cmd, buff + len - 1, NACK_VAL);
    i2c_master_stop(cmd);
    ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
    i2c_cmd_link_delete(cmd);
    return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_NoData;
}

ICM_20948_AGMT_t ICM_20948::getAGMT                 ( void ){
    status = ICM_20948_get_agmt( &_device, &agmt );
    
    if( _has_magnetometer ){
        getMagnetometerData( &agmt );
    }

    return agmt;
}

float             ICM_20948::magX                ( void ){
    return getMagUT(agmt.mag.axes.x);
}

float             ICM_20948::magY                ( void ){
    return getMagUT(agmt.mag.axes.y);
}

float             ICM_20948::magZ                ( void ){
    return getMagUT(agmt.mag.axes.z);
}

float               ICM_20948::getMagUT            ( int16_t axis_val ){
    return (((float)axis_val)*0.15);
}

float             ICM_20948::accX                ( void ){
    return getAccMG(agmt.acc.axes.x);
}

float             ICM_20948::accY                ( void ){
    return getAccMG(agmt.acc.axes.y);
}

float             ICM_20948::accZ                ( void ){
    return getAccMG(agmt.acc.axes.z);
}

float               ICM_20948::getAccMG            ( int16_t axis_val ){
    switch(agmt.fss.a){
        case 0 : return (((float)axis_val)/16.384); break;
        case 1 : return (((float)axis_val)/8.192); break;
        case 2 : return (((float)axis_val)/4.096); break;
        case 3 : return (((float)axis_val)/2.048); break;
        default : return 0; break;
    }
}

float             ICM_20948::gyrX                ( void ){
    return getGyrDPS(agmt.gyr.axes.x);
}

float             ICM_20948::gyrY                ( void ){
    return getGyrDPS(agmt.gyr.axes.y);
}

float             ICM_20948::gyrZ                ( void ){
    return getGyrDPS(agmt.gyr.axes.z);
}

float               ICM_20948::getGyrDPS            ( int16_t axis_val ){
    switch(agmt.fss.g){
        case 0 : return (((float)axis_val)/131); break;
        case 1 : return (((float)axis_val)/65.5); break;
        case 2 : return (((float)axis_val)/32.8); break;
        case 3 : return (((float)axis_val)/16.4); break;
        default : return 0; break;
    }
}

float             ICM_20948::temp                 ( void ){
    return getTempC(agmt.tmp.val);
}

float               ICM_20948::getTempC             ( int16_t val ){
    return (((float)val)/333.87) + 21;
}



const char* ICM_20948::statusString                 ( ICM_20948_Status_e stat ){
    ICM_20948_Status_e val;
    if( stat == ICM_20948_Stat_NUM){
        val = status;
    }else{
        val = stat;
    }

    switch(val){
        case ICM_20948_Stat_Ok : return "All is well."; break;
        case ICM_20948_Stat_Err : return "General Error"; break;
	    case ICM_20948_Stat_NotImpl : return "Not Implemented"; break;
        case ICM_20948_Stat_ParamErr : return "Parameter Error"; break;
        case ICM_20948_Stat_WrongID : return "Wrong ID"; break;
        case ICM_20948_Stat_InvalSensor : return "Invalid Sensor"; break;
        case ICM_20948_Stat_NoData : return "Data Underflow"; break;
        case ICM_20948_Stat_SensorNotSupported : return "Sensor Not Supported"; break;
        default :
            return "Unknown Status"; break;
        
    }
    return "None";
}



// Device Level
ICM_20948_Status_e	ICM_20948::setBank			    ( uint8_t bank ){
    status =  ICM_20948_set_bank( &_device, bank );
    return status;
}

ICM_20948_Status_e	ICM_20948::swReset			    ( void ){
    status = ICM_20948_sw_reset( &_device );
    return status;
}

ICM_20948_Status_e	ICM_20948::sleep				( bool on ){
    status = ICM_20948_sleep( &_device, on );
    return status;
}

ICM_20948_Status_e	ICM_20948::lowPower			( bool on ){
    status = ICM_20948_low_power( &_device, on );
    return status;
}

ICM_20948_Status_e	ICM_20948::setClockSource	    ( ICM_20948_PWR_MGMT_1_CLKSEL_e source ){
    status = ICM_20948_set_clock_source( &_device, source );
    return status;
}

ICM_20948_Status_e	ICM_20948::checkID			    ( void ){
    status = ICM_20948_check_id( &_device );
    return status;
}

bool	            ICM_20948::dataReady		    ( void ){
    status = ICM_20948_data_ready( &_device );
    if( status == ICM_20948_Stat_Ok ){ return true; }
    return false;
}

uint8_t	            ICM_20948::getWhoAmI		    ( void ){
    uint8_t retval = 0x00;
    status = ICM_20948_get_who_am_i( &_device, &retval );
    return retval;
}

bool                ICM_20948::isConnected         ( void ){
    status = checkID();
    if( status == ICM_20948_Stat_Ok ){ return true; }
    return false;
}


// Internal Sensor Options
ICM_20948_Status_e	ICM_20948::setSampleMode	    ( uint8_t sensor_id_bm, uint8_t lp_config_cycle_mode ){
    status = ICM_20948_set_sample_mode( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, (ICM_20948_LP_CONFIG_CYCLE_e)lp_config_cycle_mode );
    return status;
}

ICM_20948_Status_e	ICM_20948::setFullScale 	    ( uint8_t sensor_id_bm, ICM_20948_fss_t fss ){
    status = ICM_20948_set_full_scale( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, fss );
    return status;
}

ICM_20948_Status_e	ICM_20948::setDLPFcfg		    ( uint8_t sensor_id_bm, ICM_20948_dlpcfg_t cfg ){
    status = ICM_20948_set_dlpf_cfg( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, cfg );
    return status;
}

ICM_20948_Status_e	ICM_20948::enableDLPF		    ( uint8_t sensor_id_bm, bool enable ){
    status = ICM_20948_enable_dlpf( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, enable );
    return status;
}

ICM_20948_Status_e	ICM_20948::setSampleRate	    ( uint8_t sensor_id_bm, ICM_20948_smplrt_t smplrt ){
    status = ICM_20948_set_sample_rate( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, smplrt );
    return status;
}





// Interrupts on INT Pin
ICM_20948_Status_e  ICM_20948::clearInterrupts         ( void ){
    ICM_20948_INT_STATUS_t int_stat;
    ICM_20948_INT_STATUS_1_t int_stat_1;

    // read to clear interrupts
    status = ICM_20948_set_bank( &_device, 0 );                                                                                   if( status != ICM_20948_Stat_Ok ){ return status; }
    status = ICM_20948_execute_r( &_device, AGB0_REG_INT_STATUS, (uint8_t*)&int_stat, sizeof(ICM_20948_INT_STATUS_t) );           if( status != ICM_20948_Stat_Ok ){ return status; }
    status = ICM_20948_execute_r( &_device, AGB0_REG_INT_STATUS_1, (uint8_t*)&int_stat_1, sizeof(ICM_20948_INT_STATUS_1_t) );     if( status != ICM_20948_Stat_Ok ){ return status; }

    // todo: there may be additional interrupts that need to be cleared, like FIFO overflow/watermark

    return status;
}


ICM_20948_Status_e  ICM_20948::cfgIntActiveLow         ( bool active_low ){
    ICM_20948_INT_PIN_CFG_t reg;
    status = ICM_20948_int_pin_cfg		( &_device, NULL, &reg );       // read phase
    if(status != ICM_20948_Stat_Ok){ return status; }
    reg.INT1_ACTL = active_low;                                         // set the setting
    status = ICM_20948_int_pin_cfg		( &_device, &reg, NULL );       // write phase
    if(status != ICM_20948_Stat_Ok){ return status; }
    return status;
}

ICM_20948_Status_e  ICM_20948::cfgIntOpenDrain         ( bool open_drain ){
    ICM_20948_INT_PIN_CFG_t reg;
    status = ICM_20948_int_pin_cfg		( &_device, NULL, &reg );       // read phase
    if(status != ICM_20948_Stat_Ok){ return status; }
    reg.INT1_OPEN = open_drain;                                         // set the setting
    status = ICM_20948_int_pin_cfg		( &_device, &reg, NULL );       // write phase
    if(status != ICM_20948_Stat_Ok){ return status; }
    return status;
}

ICM_20948_Status_e  ICM_20948::cfgIntLatch             ( bool latching ){
    ICM_20948_INT_PIN_CFG_t reg;
    status = ICM_20948_int_pin_cfg		( &_device, NULL, &reg );       // read phase
    if(status != ICM_20948_Stat_Ok){ return status; }
    reg.INT1_LATCH_EN = latching;                                       // set the setting
    status = ICM_20948_int_pin_cfg		( &_device, &reg, NULL );       // write phase
    if(status != ICM_20948_Stat_Ok){ return status; }
    return status;
}

ICM_20948_Status_e  ICM_20948::cfgIntAnyReadToClear      ( bool enabled ){
    ICM_20948_INT_PIN_CFG_t reg;
    status = ICM_20948_int_pin_cfg		( &_device, NULL, &reg );       // read phase
    if(status != ICM_20948_Stat_Ok){ return status; }
    reg.INT_ANYRD_2CLEAR = enabled;                                     // set the setting
    status = ICM_20948_int_pin_cfg		( &_device, &reg, NULL );       // write phase
    if(status != ICM_20948_Stat_Ok){ return status; }
    return status;
}

ICM_20948_Status_e  ICM_20948::cfgFsyncActiveLow       ( bool active_low ){
    ICM_20948_INT_PIN_CFG_t reg;
    status = ICM_20948_int_pin_cfg		( &_device, NULL, &reg );       // read phase
    if(status != ICM_20948_Stat_Ok){ return status; }
    reg.ACTL_FSYNC = active_low;                                         // set the setting
    status = ICM_20948_int_pin_cfg		( &_device, &reg, NULL );       // write phase
    if(status != ICM_20948_Stat_Ok){ return status; }
    return status;
}

ICM_20948_Status_e  ICM_20948::cfgFsyncIntMode         ( bool interrupt_mode ){
    ICM_20948_INT_PIN_CFG_t reg;
    status = ICM_20948_int_pin_cfg		( &_device, NULL, &reg );       // read phase
    if(status != ICM_20948_Stat_Ok){ return status; }
    reg.FSYNC_INT_MODE_EN = interrupt_mode;                             // set the setting
    status = ICM_20948_int_pin_cfg		( &_device, &reg, NULL );       // write phase
    if(status != ICM_20948_Stat_Ok){ return status; }
    return status;
}


//      All these individual functions will use a read->set->write method to leave other settings untouched
ICM_20948_Status_e	ICM_20948::intEnableI2C        ( bool enable ){
    ICM_20948_INT_enable_t en;                              // storage
    status = ICM_20948_int_enable( &_device, NULL, &en );   // read phase
    if( status != ICM_20948_Stat_Ok ){ return status; }
    en.I2C_MST_INT_EN = enable;                             // change the setting
    status = ICM_20948_int_enable( &_device, &en, &en );    // write phase w/ readback
    if( status != ICM_20948_Stat_Ok ){ return status; }
    if( en.I2C_MST_INT_EN != enable ){
        status = ICM_20948_Stat_Err;
        return status; 
    }
    return status;
}

ICM_20948_Status_e	ICM_20948::intEnableDMP        ( bool enable ){
    ICM_20948_INT_enable_t en;                              // storage
    status = ICM_20948_int_enable( &_device, NULL, &en );   // read phase
    if( status != ICM_20948_Stat_Ok ){ return status; }
    en.DMP_INT1_EN = enable;                                // change the setting
    status = ICM_20948_int_enable( &_device, &en, &en );    // write phase w/ readback
    if( status != ICM_20948_Stat_Ok ){ return status; }
    if( en.DMP_INT1_EN != enable ){
        status = ICM_20948_Stat_Err;
        return status; 
    }
    return status;
}

ICM_20948_Status_e	ICM_20948::intEnablePLL        ( bool enable ){
    ICM_20948_INT_enable_t en;                              // storage
    status = ICM_20948_int_enable( &_device, NULL, &en );   // read phase
    if( status != ICM_20948_Stat_Ok ){ return status; }
    en.PLL_RDY_EN = enable;                                 // change the setting
    status = ICM_20948_int_enable( &_device, &en, &en );    // write phase w/ readback
    if( status != ICM_20948_Stat_Ok ){ return status; }
    if( en.PLL_RDY_EN != enable ){
        status = ICM_20948_Stat_Err;
        return status; 
    }
    return status;
}

ICM_20948_Status_e	ICM_20948::intEnableWOM        ( bool enable ){
    ICM_20948_INT_enable_t en;                              // storage
    status = ICM_20948_int_enable( &_device, NULL, &en );   // read phase
    if( status != ICM_20948_Stat_Ok ){ return status; }
    en.WOM_INT_EN = enable;                                 // change the setting
    status = ICM_20948_int_enable( &_device, &en, &en );    // write phase w/ readback
    if( status != ICM_20948_Stat_Ok ){ return status; }
    if( en.WOM_INT_EN != enable ){
        status = ICM_20948_Stat_Err;
        return status; 
    }
    return status;
}

ICM_20948_Status_e	ICM_20948::intEnableWOF        ( bool enable ){
    ICM_20948_INT_enable_t en;                              // storage
    status = ICM_20948_int_enable( &_device, NULL, &en );   // read phase
    if( status != ICM_20948_Stat_Ok ){ return status; }
    en.REG_WOF_EN = enable;                                 // change the setting
    status = ICM_20948_int_enable( &_device, &en, &en );    // write phase w/ readback
    if( status != ICM_20948_Stat_Ok ){ return status; }
    if( en.REG_WOF_EN != enable ){
        status = ICM_20948_Stat_Err;
        return status; 
    }
    return status;
}

ICM_20948_Status_e	ICM_20948::intEnableRawDataReady   ( bool enable ){
    ICM_20948_INT_enable_t en;                              // storage
    status = ICM_20948_int_enable( &_device, NULL, &en );   // read phase
    if( status != ICM_20948_Stat_Ok ){ return status; }
    en.RAW_DATA_0_RDY_EN = enable;                          // change the setting
    status = ICM_20948_int_enable( &_device, &en, &en );    // write phase w/ readback
    if( status != ICM_20948_Stat_Ok ){ return status; }
    if( en.RAW_DATA_0_RDY_EN != enable ){
        Serial.println("mismatch error");
        status = ICM_20948_Stat_Err;
        return status; 
    }
    return status;
}

ICM_20948_Status_e	ICM_20948::intEnableOverflowFIFO   ( uint8_t bm_enable ){
    ICM_20948_INT_enable_t en;                              // storage
    status = ICM_20948_int_enable( &_device, NULL, &en );   // read phase
    if( status != ICM_20948_Stat_Ok ){ return status; }
    en.FIFO_OVERFLOW_EN_0 = ((bm_enable >> 0) & 0x01);      // change the settings
    en.FIFO_OVERFLOW_EN_1 = ((bm_enable >> 1) & 0x01);
    en.FIFO_OVERFLOW_EN_2 = ((bm_enable >> 2) & 0x01);
    en.FIFO_OVERFLOW_EN_3 = ((bm_enable >> 3) & 0x01);
    en.FIFO_OVERFLOW_EN_4 = ((bm_enable >> 4) & 0x01);
    status = ICM_20948_int_enable( &_device, &en, &en );    // write phase w/ readback
    if( status != ICM_20948_Stat_Ok ){ return status; }
    return status;
}

ICM_20948_Status_e	ICM_20948::intEnableWatermarkFIFO  ( uint8_t bm_enable ){
    ICM_20948_INT_enable_t en;                              // storage
    status = ICM_20948_int_enable( &_device, NULL, &en );   // read phase
    if( status != ICM_20948_Stat_Ok ){ return status; }
    en.FIFO_WM_EN_0 = ((bm_enable >> 0) & 0x01);            // change the settings
    en.FIFO_WM_EN_1 = ((bm_enable >> 1) & 0x01);
    en.FIFO_WM_EN_2 = ((bm_enable >> 2) & 0x01);
    en.FIFO_WM_EN_3 = ((bm_enable >> 3) & 0x01);
    en.FIFO_WM_EN_4 = ((bm_enable >> 4) & 0x01);
    status = ICM_20948_int_enable( &_device, &en, &en );    // write phase w/ readback
    if( status != ICM_20948_Stat_Ok ){ return status; }
    return status;
}



// Interface Options
ICM_20948_Status_e	ICM_20948::i2cMasterPassthrough 	( bool passthrough ){
    status = ICM_20948_i2c_master_passthrough ( &_device, passthrough );
    return status;
}

ICM_20948_Status_e	ICM_20948::i2cMasterEnable          ( bool enable ){
    status = ICM_20948_i2c_master_enable( &_device, enable );
    return status;
}

ICM_20948_Status_e	ICM_20948::i2cMasterConfigureSlave  ( uint8_t slave, uint8_t addr, uint8_t reg, uint8_t len, bool Rw, bool enable, bool data_only, bool grp, bool swap ){
    status = ICM_20948_i2c_master_configure_slave 		( &_device, slave, addr, reg, len, Rw, enable, data_only, grp, swap );
    return status;
}

ICM_20948_Status_e 	ICM_20948::i2cMasterSLV4Transaction( uint8_t addr, uint8_t reg, uint8_t* data, uint8_t len, bool Rw, bool send_reg_addr ){
    status = ICM_20948_i2c_master_slv4_txn( &_device, addr, reg, data, len, Rw, send_reg_addr );
    return status;
}
ICM_20948_Status_e	ICM_20948::i2cMasterSingleW        ( uint8_t addr, uint8_t reg, uint8_t data ){
    status = ICM_20948_i2c_master_single_w( &_device, addr, reg, &data );
    return status;
}
uint8_t	ICM_20948::i2cMasterSingleR        ( uint8_t addr, uint8_t reg ){
    uint8_t data;
    status = ICM_20948_i2c_master_single_r( &_device, addr, reg, &data );
    return data;
}










ICM_20948_Status_e  ICM_20948::startupDefault          ( void ){
    ICM_20948_Status_e retval = ICM_20948_Stat_Ok;

    retval = checkID();
    if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }

    retval = swReset();
    if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
    delay(50);

    retval = sleep( false );
    if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }

    retval = lowPower( false );
    if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
    
    retval = setSampleMode( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), ICM_20948_Sample_Mode_Continuous );  // options: ICM_20948_Sample_Mode_Continuous or ICM_20948_Sample_Mode_Cycled
    if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }                                                                 // sensors: 	ICM_20948_Internal_Acc, ICM_20948_Internal_Gyr, ICM_20948_Internal_Mst

    ICM_20948_fss_t FSS;
    FSS.a = gpm2;       // (ICM_20948_ACCEL_CONFIG_FS_SEL_e)
    FSS.g = dps250;     // (ICM_20948_GYRO_CONFIG_1_FS_SEL_e)
    retval = setFullScale( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), FSS );  
    if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }

    ICM_20948_dlpcfg_t dlpcfg;
    dlpcfg.a = acc_d473bw_n499bw;
    dlpcfg.g = gyr_d361bw4_n376bw5;
    retval = setDLPFcfg( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), dlpcfg );
    if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }

    retval = enableDLPF( ICM_20948_Internal_Acc, false );
    if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
    retval = enableDLPF( ICM_20948_Internal_Gyr, false );
    if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }

    _has_magnetometer = true;
    retval = startupMagnetometer();
    if(( retval != ICM_20948_Stat_Ok) && ( retval != ICM_20948_Stat_NotImpl )){ status = retval; return status; }
    if( retval == ICM_20948_Stat_NotImpl ){
        // This is a temporary fix. 
        // Ultimately we *should* be able to configure the I2C master to handle the 
        // magnetometer no matter what interface (SPI / I2C) we are using. 

        // Should try testing I2C master functionality on a bare ICM chip w/o TXS0108 level shifter...

        _has_magnetometer = false;
        retval = ICM_20948_Stat_Ok; // reset the retval because we handled it in this cases
    }

    status = retval;
    return status;
}

ICM_20948_Status_e  ICM_20948::startupMagnetometer    ( void ){
    return ICM_20948_Stat_NotImpl; // By default we assume that we cannot access the magnetometer
}

ICM_20948_Status_e  ICM_20948::getMagnetometerData     ( ICM_20948_AGMT_t* pagmt ){
    return ICM_20948_Stat_NotImpl; // By default we assume that we cannot access the magnetometer
}









// direct read/write
ICM_20948_Status_e  ICM_20948::read                 ( uint8_t reg, uint8_t* pdata, uint32_t len){
    status = ICM_20948_execute_r( &_device, reg, pdata, len );
    return status;
}

ICM_20948_Status_e  ICM_20948::write                ( uint8_t reg, uint8_t* pdata, uint32_t len){
    status = ICM_20948_execute_w( &_device, reg, pdata, len );
    return status;
}

byte ICM_20948_I2C::begin(bool fusion){
    // Associate 
	_ad0 = ICM_20948_ARD_UNUSED_PIN;
	_ad0val = false;

  _addr = ICM_20948_I2C_ADDR_AD0;
  if( _ad0val ){ _addr = ICM_20948_I2C_ADDR_AD1; }

    // Set pinmodes
	if(_ad0 != ICM_20948_ARD_UNUSED_PIN){ pinMode(_ad0, OUTPUT); }

    // Set pins to default positions
	if(_ad0 != ICM_20948_ARD_UNUSED_PIN){ digitalWrite(_ad0, _ad0val); }

    if (!initI2C(100000)) return 0;
    
    // Set up the serif
    _serif.write = ICM_20948_write_I2C;
    _serif.read = ICM_20948_read_I2C;
    _serif.user = (void*)this;              // refer to yourself in the user field

    // Link the serif
    _device._serif = &_serif;

    // Perform default startup
    status = startupDefault();
    if( status != ICM_20948_Stat_Ok ){
        return 0;
    }

  if (fusion && !quaterion) {
    quaterion = new CQuaterion;
  }

    return 2;
}

ICM_20948_Status_e  ICM_20948_I2C::startupMagnetometer    ( void ){
    // If using the magnetometer through passthrough:
    i2cMasterPassthrough( true ); // Set passthrough mode to try to access the magnetometer (by default I2C master is disabled but you still have to enable the passthrough)

    // Try to set up magnetometer
    AK09916_CNTL2_Reg_t reg;
    reg.MODE = AK09916_mode_cont_100hz;

    ICM_20948_Status_e retval = writeMag( AK09916_REG_CNTL2, (uint8_t*)&reg, sizeof(AK09916_CNTL2_Reg_t) );
    status = retval;
    if(status == ICM_20948_Stat_Ok){
        _has_magnetometer = true;
    }
    return status;
}


ICM_20948_Status_e ICM_20948_I2C::magWhoIAm( void ){
    ICM_20948_Status_e retval = ICM_20948_Stat_Ok;

    const uint8_t len = 2;
    uint8_t whoiam[len];
    retval = readMag( AK09916_REG_WIA1, whoiam, len );
    status = retval;
    if( retval != ICM_20948_Stat_Ok ){ return retval; }

    if( (whoiam[0] == (MAG_AK09916_WHO_AM_I >> 8)) && ( whoiam[1] == (MAG_AK09916_WHO_AM_I & 0xFF)) ){
        retval = ICM_20948_Stat_Ok;
        status = retval;
        return status;
    }
    retval = ICM_20948_Stat_WrongID;
    status = retval;
    return status;
}

bool                ICM_20948_I2C::magIsConnected( void ){
    if( magWhoIAm() != ICM_20948_Stat_Ok ){
        return false;
    }
    return true;
}

ICM_20948_Status_e  ICM_20948_I2C::getMagnetometerData     ( ICM_20948_AGMT_t* pagmt ){

    const uint8_t reqd_len = 9; // you must read all the way through the status2 register to re-enable the next measurement
    uint8_t buff[reqd_len];
        
    status = readMag( AK09916_REG_ST1, buff, reqd_len );
    if( status != ICM_20948_Stat_Ok ){
        return status;
    }

    pagmt->mag.axes.x = ((buff[2] << 8) | (buff[1] & 0xFF));
    pagmt->mag.axes.y = ((buff[4] << 8) | (buff[3] & 0xFF));
    pagmt->mag.axes.z = ((buff[6] << 8) | (buff[5] & 0xFF));

    return status;
}

ICM_20948_Status_e ICM_20948_I2C::readMag( uint8_t reg, uint8_t* pdata, uint8_t len ){
	// write sub-address
	i2c_cmd_handle_t cmd = i2c_cmd_link_create();
	i2c_master_start(cmd);
	i2c_master_write_byte(cmd, ( MAG_AK09916_I2C_ADDR << 1 ) | WRITE_BIT, ACK_CHECK_EN);
	i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
	i2c_master_stop(cmd);
	esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
	i2c_cmd_link_delete(cmd);
	if (ret != ESP_OK) return ICM_20948_Stat_Err;
	// read data
	cmd = i2c_cmd_link_create();
	i2c_master_start(cmd);
	i2c_master_write_byte(cmd, ( MAG_AK09916_I2C_ADDR << 1 ) | READ_BIT, ACK_CHECK_EN);
	if (len > 1) {
		i2c_master_read(cmd, pdata, len - 1, ACK_VAL);
	}
	i2c_master_read_byte(cmd, pdata + len - 1, NACK_VAL);
	i2c_master_stop(cmd);
	ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
	i2c_cmd_link_delete(cmd);
	return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_NoData;
}

ICM_20948_Status_e ICM_20948_I2C::writeMag( uint8_t reg, uint8_t* pdata, uint8_t len ){
    i2c_cmd_handle_t cmd = i2c_cmd_link_create();
    i2c_master_start(cmd);
    i2c_master_write_byte(cmd, ( MAG_AK09916_I2C_ADDR << 1 ) | WRITE_BIT, ACK_CHECK_EN);
    i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
    i2c_master_write(cmd, pdata, len, ACK_CHECK_DIS);
    i2c_master_stop(cmd);
    esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
    i2c_cmd_link_delete(cmd);
    return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_Err;
}

bool ICM_20948_I2C::read(float* acc, float* gyr, float* mag, float* tmp, ORIENTATION* ori)
{
  if(!dataReady() || ICM_20948_get_agmt( &_device, &agmt ) != ICM_20948_Stat_Ok){
    return false;
  }
  if( _has_magnetometer ){
    getMagnetometerData( &agmt );
  }
  if (acc) {
    acc[0] = accX() / 1000;
    acc[1] = accY() / 1000;
    acc[2] = accZ() / 1000;
  }
  if (gyr) {
    gyr[0] = gyrX();
    gyr[1] = gyrY();
    gyr[2] = gyrZ();
  }
  if (mag) {
    mag[0] = magX();
    mag[1] = magY();
    mag[2] = magZ();
  }
  if (tmp) {
    *tmp = temp();
  }
  if (quaterion && acc && gyr && mag) {
    quaterion->MadgwickQuaternionUpdate(acc[0], acc[1], acc[2], gyr[0]*PI/180.0f, gyr[1]*PI/180.0f, gyr[2]*PI/180.0f,  mag[0],  mag[1], mag[2]);
    quaterion->getOrientation(ori);
  }
  return true;
}