FreematicsMEMS.h
16 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/*************************************************************************
* Freematics MEMS motion sensor helper classes
* Distributed under BSD license
* Visit https://freematics.com for more information
* (C)2016-2020 Stanley Huang <stanley@freematics.com.au>
*************************************************************************/
#include "FreematicsBase.h"
#include "utility/ICM_20948_C.h" // The C backbone
// See also MPU-9250 Register Map and Descriptions, Revision 4.0,
// RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in above
// document; the MPU9250 and MPU9150 are virtually identical but the latter has
// a different register map
//Magnetometer Registers
#define AK8963_ADDRESS 0x0C
#define WHO_AM_I_AK8963 0x00 // should return 0x48
#define INFO 0x01
#define AK8963_ST1 0x02 // data ready status bit 0
#define AK8963_XOUT_L 0x03 // data
#define AK8963_XOUT_H 0x04
#define AK8963_YOUT_L 0x05
#define AK8963_YOUT_H 0x06
#define AK8963_ZOUT_L 0x07
#define AK8963_ZOUT_H 0x08
#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
#define AK8963_CNTL2 0x0B
#define AK8963_ASTC 0x0C // Self test control
#define AK8963_I2CDIS 0x0F // I2C disable
#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
#define SELF_TEST_X_GYRO 0x00
#define SELF_TEST_Y_GYRO 0x01
#define SELF_TEST_Z_GYRO 0x02
/*#define X_FINE_GAIN 0x03 // [7:0] fine gain
#define Y_FINE_GAIN 0x04
#define Z_FINE_GAIN 0x05
#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
#define XA_OFFSET_L_TC 0x07
#define YA_OFFSET_H 0x08
#define YA_OFFSET_L_TC 0x09
#define ZA_OFFSET_H 0x0A
#define ZA_OFFSET_L_TC 0x0B */
#define SELF_TEST_X_ACCEL 0x0D
#define SELF_TEST_Y_ACCEL 0x0E
#define SELF_TEST_Z_ACCEL 0x0F
#define SELF_TEST_A 0x10
#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
#define XG_OFFSET_L 0x14
#define YG_OFFSET_H 0x15
#define YG_OFFSET_L 0x16
#define ZG_OFFSET_H 0x17
#define ZG_OFFSET_L 0x18
#define SMPLRT_DIV 0x19
#define CONFIG 0x1A
#define GYRO_CONFIG 0x1B
#define ACCEL_CONFIG 0x1C
#define ACCEL_CONFIG2 0x1D
#define LP_ACCEL_ODR 0x1E
#define WOM_THR 0x1F
// Duration counter threshold for motion interrupt generation, 1 kHz rate,
// LSB = 1 ms
#define MOT_DUR 0x20
// Zero-motion detection threshold bits [7:0]
#define ZMOT_THR 0x21
// Duration counter threshold for zero motion interrupt generation, 16 Hz rate,
// LSB = 64 ms
#define ZRMOT_DUR 0x22
#define FIFO_EN 0x23
#define I2C_MST_CTRL 0x24
#define I2C_SLV0_ADDR 0x25
#define I2C_SLV0_REG 0x26
#define I2C_SLV0_CTRL 0x27
#define I2C_SLV1_ADDR 0x28
#define I2C_SLV1_REG 0x29
#define I2C_SLV1_CTRL 0x2A
#define I2C_SLV2_ADDR 0x2B
#define I2C_SLV2_REG 0x2C
#define I2C_SLV2_CTRL 0x2D
#define I2C_SLV3_ADDR 0x2E
#define I2C_SLV3_REG 0x2F
#define I2C_SLV3_CTRL 0x30
#define I2C_SLV4_ADDR 0x31
#define I2C_SLV4_REG 0x32
#define I2C_SLV4_DO 0x33
#define I2C_SLV4_CTRL 0x34
#define I2C_SLV4_DI 0x35
#define I2C_MST_STATUS 0x36
#define INT_PIN_CFG 0x37
#define INT_ENABLE 0x38
#define DMP_INT_STATUS 0x39 // Check DMP interrupt
#define INT_STATUS 0x3A
#define ACCEL_XOUT_H 0x3B
#define ACCEL_XOUT_L 0x3C
#define ACCEL_YOUT_H 0x3D
#define ACCEL_YOUT_L 0x3E
#define ACCEL_ZOUT_H 0x3F
#define ACCEL_ZOUT_L 0x40
#define TEMP_OUT_H 0x41
#define TEMP_OUT_L 0x42
#define GYRO_XOUT_H 0x43
#define GYRO_XOUT_L 0x44
#define GYRO_YOUT_H 0x45
#define GYRO_YOUT_L 0x46
#define GYRO_ZOUT_H 0x47
#define GYRO_ZOUT_L 0x48
#define EXT_SENS_DATA_00 0x49
#define EXT_SENS_DATA_01 0x4A
#define EXT_SENS_DATA_02 0x4B
#define EXT_SENS_DATA_03 0x4C
#define EXT_SENS_DATA_04 0x4D
#define EXT_SENS_DATA_05 0x4E
#define EXT_SENS_DATA_06 0x4F
#define EXT_SENS_DATA_07 0x50
#define EXT_SENS_DATA_08 0x51
#define EXT_SENS_DATA_09 0x52
#define EXT_SENS_DATA_10 0x53
#define EXT_SENS_DATA_11 0x54
#define EXT_SENS_DATA_12 0x55
#define EXT_SENS_DATA_13 0x56
#define EXT_SENS_DATA_14 0x57
#define EXT_SENS_DATA_15 0x58
#define EXT_SENS_DATA_16 0x59
#define EXT_SENS_DATA_17 0x5A
#define EXT_SENS_DATA_18 0x5B
#define EXT_SENS_DATA_19 0x5C
#define EXT_SENS_DATA_20 0x5D
#define EXT_SENS_DATA_21 0x5E
#define EXT_SENS_DATA_22 0x5F
#define EXT_SENS_DATA_23 0x60
#define MOT_DETECT_STATUS 0x61
#define I2C_SLV0_DO 0x63
#define I2C_SLV1_DO 0x64
#define I2C_SLV2_DO 0x65
#define I2C_SLV3_DO 0x66
#define I2C_MST_DELAY_CTRL 0x67
#define SIGNAL_PATH_RESET 0x68
#define MOT_DETECT_CTRL 0x69
#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
#define PWR_MGMT_2 0x6C
#define DMP_BANK 0x6D // Activates a specific bank in the DMP
#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
#define DMP_REG 0x6F // Register in DMP from which to read or to which to write
#define DMP_REG_1 0x70
#define DMP_REG_2 0x71
#define FIFO_COUNTH 0x72
#define FIFO_COUNTL 0x73
#define FIFO_R_W 0x74
#define WHO_AM_I_MPU9250 0x75 // Should return 0x71
#define XA_OFFSET_H 0x77
#define XA_OFFSET_L 0x78
#define YA_OFFSET_H 0x7A
#define YA_OFFSET_L 0x7B
#define ZA_OFFSET_H 0x7D
#define ZA_OFFSET_L 0x7E
#define MPU9250_ADDRESS 0x68 // Device address when ADO = 0
#define AK8963_ADDRESS 0x0C // Address of magnetometer
enum {
AFS_2G = 0,
AFS_4G,
AFS_8G,
AFS_16G
};
enum {
GFS_250DPS = 0,
GFS_500DPS,
GFS_1000DPS,
GFS_2000DPS
};
enum {
MFS_14BITS = 0, // 0.6 mG per LSB
MFS_16BITS // 0.15 mG per LSB
};
// Specify sensor full scale
#define Ascale AFS_2G
#define Gscale GFS_250DPS
#define mRes (10.*4912./32760.0)
#if Ascale == AFS_2G
#define aRes (2.0/32768.0)
#elif Ascale == AFS_4G
#define aRes (4.0/32768.0)
#elif Ascale == AFS_8G
#define aRes (8.0/32768.0)
#elif Ascale == AFS_16G
#define aRes (16.0/32768.0)
#endif
#if Gscale == GFS_250DPS
#define gRes (250.0/32768.0)
#elif Gscale == GFS_500DPS
#define gRes (500.0/32768.0)
#elif Gscale == GFS_1000DPS
#define gRes (1000.0/32768.0)
#elif Gscale == GFS_2000DPS
#define gRes (2000.0/32768.0)
#endif
// 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read
#define Mmode 0x02
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
#define Ki 0.0f
class CQuaterion
{
public:
void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz);
void getOrientation(ORIENTATION* ori);
private:
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
float GyroMeasError = PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s)
float GyroMeasDrift = PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
uint32_t firstUpdate = 0; // used to calculate integration interval
uint32_t lastUpdate = 0;
float deltat = 0.0f;
};
class MEMS_I2C
{
public:
MEMS_I2C() {};
virtual ~MEMS_I2C() {};
virtual byte begin(bool fusion = false) = 0;
virtual void end() { uninitI2C(); }
virtual bool read(float* acc, float* gyr = 0, float* mag = 0, float* temp = 0, ORIENTATION* ori = 0) = 0;
protected:
bool initI2C(unsigned long clock);
void uninitI2C();
};
class MPU9250 : public MEMS_I2C
{
public:
byte begin(bool fusion = false);
bool read(float* acc, float* gyr = 0, float* mag = 0, float* temp = 0, ORIENTATION* ori = 0);
private:
void writeByte(uint8_t, uint8_t);
uint8_t readByte(uint8_t);
bool readBytes(uint8_t, uint8_t, uint8_t *);
void readAccelData(int16_t *);
int16_t readTempData();
void init();
void getAres();
void getMres();
void getGres();
void readGyroData(int16_t *);
void readMagData(int16_t *);
bool initAK8963(float *);
void calibrateMPU9250(float * gyroBias, float * accelBias);
void MPU9250SelfTest(float * destination);
void writeByteAK(uint8_t, uint8_t);
uint8_t readByteAK(uint8_t);
bool readBytesAK(uint8_t, uint8_t, uint8_t *);
float gyroBias[3] = {0};
float accelBias[3] = {0}; // Bias corrections for gyro and accelerometer
float magCalibration[3] = {0};
int16_t accelCount[3] = {0};
int16_t gyroCount[3] = {0};
int16_t magCount[3] = {0}; // Stores the 16-bit signed magnetometer sensor output
CQuaterion* quaterion = 0;
};
#define ICM_20948_ARD_UNUSED_PIN 0xFF
// Base
class ICM_20948 {
private:
protected:
ICM_20948_Device_t _device;
bool _has_magnetometer;
float getTempC ( int16_t val );
float getGyrDPS ( int16_t axis_val );
float getAccMG ( int16_t axis_val );
float getMagUT ( int16_t axis_val );
public:
ICM_20948() {};
virtual ~ICM_20948() {};
ICM_20948_AGMT_t agmt; // Acceleometer, Gyroscope, Magenetometer, and Temperature data
ICM_20948_AGMT_t getAGMT ( void ); // Updates the agmt field in the object and also returns a copy directly
float magX ( void );// micro teslas
float magY ( void );// micro teslas
float magZ ( void );// micro teslas
float accX ( void );// milli g's
float accY ( void );// milli g's
float accZ ( void );// milli g's
float gyrX ( void );// degrees per second
float gyrY ( void );// degrees per second
float gyrZ ( void );// degrees per second
float temp ( void );// degrees celsius
ICM_20948_Status_e status; // Status from latest operation
const char* statusString ( ICM_20948_Status_e stat = ICM_20948_Stat_NUM ); // Returns a human-readable status message. Defaults to status member, but prints string for supplied status if supplied
// Device Level
ICM_20948_Status_e setBank ( uint8_t bank ); // Sets the bank
ICM_20948_Status_e swReset ( void ); // Performs a SW reset
ICM_20948_Status_e sleep ( bool on = false ); // Set sleep mode for the chip
ICM_20948_Status_e lowPower ( bool on = true ); // Set low power mode for the chip
ICM_20948_Status_e setClockSource ( ICM_20948_PWR_MGMT_1_CLKSEL_e source ); // Choose clock source
ICM_20948_Status_e checkID ( void ); // Return 'ICM_20948_Stat_Ok' if whoami matches ICM_20948_WHOAMI
bool dataReady ( void ); // Returns 'true' if data is ready
uint8_t getWhoAmI ( void ); // Return whoami in out prarmeter
bool isConnected ( void ); // Returns true if communications with the device are sucessful
// Internal Sensor Options
ICM_20948_Status_e setSampleMode ( uint8_t sensor_id_bm, uint8_t lp_config_cycle_mode ); // Use to set accel, gyro, and I2C master into cycled or continuous modes
ICM_20948_Status_e setFullScale ( uint8_t sensor_id_bm, ICM_20948_fss_t fss );
ICM_20948_Status_e setDLPFcfg ( uint8_t sensor_id_bm, ICM_20948_dlpcfg_t cfg );
ICM_20948_Status_e enableDLPF ( uint8_t sensor_id_bm, bool enable );
ICM_20948_Status_e setSampleRate ( uint8_t sensor_id_bm, ICM_20948_smplrt_t smplrt );
// Interrupts on INT and FSYNC Pins
ICM_20948_Status_e clearInterrupts ( void );
ICM_20948_Status_e cfgIntActiveLow ( bool active_low );
ICM_20948_Status_e cfgIntOpenDrain ( bool open_drain );
ICM_20948_Status_e cfgIntLatch ( bool latching ); // If not latching then the interrupt is a 50 us pulse
ICM_20948_Status_e cfgIntAnyReadToClear ( bool enabled ); // If enabled, *ANY* read will clear the INT_STATUS register. So if you have multiple interrupt sources enabled be sure to read INT_STATUS first
ICM_20948_Status_e cfgFsyncActiveLow ( bool active_low );
ICM_20948_Status_e cfgFsyncIntMode ( bool interrupt_mode ); // Can ue FSYNC as an interrupt input that sets the I2C Master Status register's PASS_THROUGH bit
ICM_20948_Status_e intEnableI2C ( bool enable );
ICM_20948_Status_e intEnableDMP ( bool enable );
ICM_20948_Status_e intEnablePLL ( bool enable );
ICM_20948_Status_e intEnableWOM ( bool enable );
ICM_20948_Status_e intEnableWOF ( bool enable );
ICM_20948_Status_e intEnableRawDataReady ( bool enable );
ICM_20948_Status_e intEnableOverflowFIFO ( uint8_t bm_enable );
ICM_20948_Status_e intEnableWatermarkFIFO ( uint8_t bm_enable );
// Interface Options
ICM_20948_Status_e i2cMasterPassthrough ( bool passthrough = true );
ICM_20948_Status_e i2cMasterEnable ( bool enable = true );
ICM_20948_Status_e i2cMasterConfigureSlave ( uint8_t slave, uint8_t addr, uint8_t reg, uint8_t len, bool Rw = true, bool enable = true, bool data_only = false, bool grp = false, bool swap = false );
ICM_20948_Status_e i2cMasterSLV4Transaction( uint8_t addr, uint8_t reg, uint8_t* data, uint8_t len, bool Rw, bool send_reg_addr = true );
ICM_20948_Status_e i2cMasterSingleW ( uint8_t addr, uint8_t reg, uint8_t data );
uint8_t i2cMasterSingleR ( uint8_t addr, uint8_t reg );
// Default Setup
ICM_20948_Status_e startupDefault ( void );
virtual ICM_20948_Status_e startupMagnetometer ( void );
virtual ICM_20948_Status_e getMagnetometerData ( ICM_20948_AGMT_t* pagmt );
// direct read/write
ICM_20948_Status_e read ( uint8_t reg, uint8_t* pdata, uint32_t len);
ICM_20948_Status_e write ( uint8_t reg, uint8_t* pdata, uint32_t len);
CQuaterion* quaterion = 0;
};
class ICM_20948_I2C : public MEMS_I2C, public ICM_20948 {
public:
uint8_t _addr;
uint8_t _ad0;
bool _ad0val;
ICM_20948_Serif_t _serif;
virtual ICM_20948_Status_e readMag( uint8_t reg, uint8_t* pdata, uint8_t len );
virtual ICM_20948_Status_e writeMag( uint8_t reg, uint8_t* pdata, uint8_t len );
byte begin(bool fusion = false);
bool read(float* acc, float* gyr = 0, float* mag = 0, float* tmp = 0, ORIENTATION* ori = 0);
ICM_20948_Status_e startupMagnetometer( void );
ICM_20948_Status_e magWhoIAm( void );
bool magIsConnected( void );
ICM_20948_Status_e getMagnetometerData ( ICM_20948_AGMT_t* pagmt );
};