FreematicsPlus.cpp
25.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
/*************************************************************************
* Arduino library for ESP32 based Freematics ONE+ and Freematics Esprit
* Distributed under BSD license
* Visit https://freematics.com for more information
* (C)2017-2019 Developed by Stanley Huang <stanley@freematics.com.au>
*************************************************************************/
#include <Arduino.h>
#include <SPI.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "esp_pm.h"
#include "esp_task_wdt.h"
#include "nvs_flash.h"
#include "driver/uart.h"
#include "esp_log.h"
#include "soc/uart_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/sens_reg.h"
#include "FreematicsPlus.h"
#include "FreematicsGPS.h"
#define VERBOSE_LINK 0
#define VERBOSE_XBEE 0
static TinyGPS gps;
static byte gpsPendingData = 0;
static char* nmeaBuffer = 0;
static int nmeaBytes = 0;
Mutex nmeaBufferMutex;
static Task taskGPS;
static GPS_DATA* gpsData = 0;
static uint32_t inline getCycleCount()
{
uint32_t ccount;
__asm__ __volatile__("esync; rsr %0,ccount":"=a" (ccount));
return ccount;
}
static uint8_t inline readRxPin()
{
#if PIN_GPS_UART_RXD < 32
return (uint8_t)(GPIO.in >> PIN_GPS_UART_RXD) << 7;
#else
return (uint8_t)(GPIO.in1.val >> (PIN_GPS_UART_RXD - 32)) << 7;
#endif
}
static void gps_decode_task(void* inst)
{
for (;;) {
uint8_t c = 0;
int len = uart_read_bytes(GPS_UART_NUM, &c, 1, 60000 / portTICK_RATE_MS);
if (len != 1) continue;
if (nmeaBuffer && nmeaBytes < NMEA_BUF_SIZE) {
nmeaBufferMutex.lock();
nmeaBuffer[nmeaBytes++] = c;
nmeaBufferMutex.unlock();
}
if (gps.encode(c)) {
gpsPendingData++;
}
}
}
static void inline setTxPinHigh()
{
#if PIN_GPS_UART_TXD < 32
GPIO.out_w1ts = ((uint32_t)1 << PIN_GPS_UART_TXD);
#else
GPIO.out1_w1ts.val = ((uint32_t)1 << (PIN_GPS_UART_TXD - 32));
#endif
}
static void inline setTxPinLow()
{
#if PIN_GPS_UART_TXD < 32
GPIO.out_w1tc = ((uint32_t)1 << PIN_GPS_UART_TXD);
#else
GPIO.out1_w1tc.val = ((uint32_t)1 << (PIN_GPS_UART_TXD - 32));
#endif
}
static void softSerialTx(uint32_t baudrate, uint8_t c)
{
uint32_t start = getCycleCount();
// start bit
setTxPinLow();
for (uint32_t i = 1; i <= 8; i++, c >>= 1) {
while (getCycleCount() - start < i * F_CPU / baudrate);
if (c & 0x1)
setTxPinHigh();
else
setTxPinLow();
}
while (getCycleCount() - start < (uint32_t)9 * F_CPU / baudrate);
setTxPinHigh();
while (getCycleCount() - start < (uint32_t)10 * F_CPU / baudrate);
}
static void gps_soft_decode_task(void* inst)
{
// start receiving and decoding
for (;;) {
uint8_t c = 0;
do {
taskYIELD();
} while (readRxPin());
uint32_t start = getCycleCount();
for (uint32_t i = 1; i <= 7; i++) {
taskYIELD();
while (getCycleCount() - start < i * F_CPU / GPS_SOFT_BAUDRATE + F_CPU / GPS_SOFT_BAUDRATE / 3);
c = (c | readRxPin()) >> 1;
}
if (nmeaBuffer && nmeaBytes < NMEA_BUF_SIZE) {
//nmeaBufferMutex.lock();
nmeaBuffer[nmeaBytes++] = c;
//nmeaBufferMutex.unlock();
}
if (gps.encode(c)) {
gpsPendingData++;
}
do {
taskYIELD();
} while (getCycleCount() - start < (uint32_t)9 * F_CPU / GPS_SOFT_BAUDRATE + F_CPU / GPS_SOFT_BAUDRATE / 2);
}
}
extern "C" {
uint8_t temprature_sens_read();
int32_t hall_sens_read();
}
// get chip temperature sensor
int readChipTemperature()
{
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 3, SENS_FORCE_XPD_SAR_S);
SET_PERI_REG_BITS(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_CLK_DIV, 10, SENS_TSENS_CLK_DIV_S);
CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP);
CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_DUMP_OUT);
SET_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP_FORCE);
SET_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP);
ets_delay_us(100);
SET_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_DUMP_OUT);
ets_delay_us(5);
int res = GET_PERI_REG_BITS2(SENS_SAR_SLAVE_ADDR3_REG, SENS_TSENS_OUT, SENS_TSENS_OUT_S);
return (res - 32) * 5 / 9;
}
int readChipHallSensor()
{
return hall_sens_read();
}
uint16_t getFlashSize()
{
return (spi_flash_get_chip_size() >> 10);
}
bool Task::create(void (*task)(void*), const char* name, int priority, int stacksize)
{
if (xHandle) return false;
/* Create the task, storing the handle. */
BaseType_t xReturned = xTaskCreate(task, name, stacksize, (void*)this, priority, &xHandle);
return xReturned == pdPASS;
}
void Task::destroy()
{
if (xHandle) {
void* x = xHandle;
xHandle = 0;
vTaskDelete((TaskHandle_t)x);
}
}
void Task::sleep(uint32_t ms)
{
vTaskDelay(ms / portTICK_PERIOD_MS);
}
bool Task::running()
{
return xHandle != 0;
}
void Task::suspend()
{
if (xHandle) vTaskSuspend(xHandle);
}
void Task::resume()
{
if (xHandle) vTaskResume(xHandle);
}
Mutex::Mutex()
{
xSemaphore = xSemaphoreCreateMutex();
xSemaphoreGive(xSemaphore);
}
void Mutex::lock()
{
xSemaphoreTake(xSemaphore, portMAX_DELAY);
}
void Mutex::unlock()
{
xSemaphoreGive(xSemaphore);
}
bool CLink_UART::begin(unsigned int baudrate, int rxPin, int txPin)
{
#if VERBOSE_LINK
Serial.println("[UART BEGIN]");
#endif
uart_config_t uart_config = {
.baud_rate = (int)baudrate,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.rx_flow_ctrl_thresh = 122,
};
//Configure UART parameters
uart_param_config(LINK_UART_NUM, &uart_config);
//Set UART pins
uart_set_pin(LINK_UART_NUM, txPin, rxPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
//Install UART driver
if (uart_driver_install(LINK_UART_NUM, LINK_UART_BUF_SIZE, 0, 0, NULL, 0) != ESP_OK)
return false;
return true;
}
void CLink_UART::end()
{
#if VERBOSE_LINK
Serial.println("[UART END]");
#endif
uart_driver_delete(LINK_UART_NUM);
}
int CLink_UART::receive(char* buffer, int bufsize, unsigned int timeout)
{
unsigned char n = 0;
unsigned long startTime = millis();
unsigned long elapsed;
for (;;) {
elapsed = millis() - startTime;
if (elapsed > timeout) break;
if (n >= bufsize - 1) break;
int len = uart_read_bytes(LINK_UART_NUM, (uint8_t*)buffer + n, bufsize - n - 1, 1);
if (len < 0) break;
if (len == 0) continue;
buffer[n + len] = 0;
if (strstr(buffer + n, "\r>")) {
n += len;
break;
}
n += len;
if (strstr(buffer, "...")) {
buffer[0] = 0;
n = 0;
timeout += OBD_TIMEOUT_LONG;
}
}
#if VERBOSE_LINK
Serial.print("[UART RECV]");
Serial.println(buffer);
#endif
return n;
}
bool CLink_UART::send(const char* str)
{
#if VERBOSE_LINK
Serial.print("[UART SEND]");
Serial.println(str);
#endif
int len = strlen(str);
return uart_write_bytes(LINK_UART_NUM, str, len) == len;
}
int CLink_UART::sendCommand(const char* cmd, char* buf, int bufsize, unsigned int timeout)
{
send(cmd);
return receive(buf, bufsize, timeout);
}
int CLink_UART::read()
{
uint8_t c;
if (uart_read_bytes(LINK_UART_NUM, &c, 1, 1) == 1)
return c;
else
return -1;
}
bool CLink_UART::changeBaudRate(unsigned int baudrate)
{
char buf[32];
sprintf(buf, "ATBR1 %X\r", baudrate);
sendCommand(buf, buf, sizeof(buf), 1000);
delay(50);
end();
return begin(baudrate);
}
bool CLink_SPI::begin(unsigned int freq, int rxPin, int txPin)
{
#if VERBOSE_LINK
Serial.println("[SPI BEGIN]");
#endif
pinMode(PIN_LINK_SPI_READY, INPUT);
pinMode(PIN_LINK_SPI_CS, OUTPUT);
digitalWrite(PIN_LINK_SPI_CS, HIGH);
delay(50);
for (uint32_t t = millis(); millis() - t < 50; ) {
if (digitalRead(PIN_LINK_SPI_READY) == LOW) return false;
}
SPI.begin();
SPI.setFrequency(freq);
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
return true;
}
void CLink_SPI::end()
{
#if VERBOSE_LINK
Serial.println("[SPI END]");
#endif
SPI.end();
}
int CLink_SPI::receive(char* buffer, int bufsize, unsigned int timeout)
{
int n = 0;
bool eos = false;
bool matched = false;
portMUX_TYPE m = portMUX_INITIALIZER_UNLOCKED;
uint32_t t = millis();
do {
while (digitalRead(PIN_LINK_SPI_READY) == HIGH) {
if (millis() - t > 3000) return -1;
delay(1);
}
#if VERBOSE_LINK
Serial.println("[SPI RECV]");
#endif
portENTER_CRITICAL(&m);
digitalWrite(PIN_LINK_SPI_CS, LOW);
while (digitalRead(PIN_LINK_SPI_READY) == LOW && millis() - t < timeout) {
char c = SPI.transfer(' ');
if (c == 0 && c == 0xff) continue;
if (!eos) eos = (c == 0x9);
if (eos) continue;
if (!matched) {
// match header
if (n == 0 && c != header[0]) continue;
if (n == bufsize - 1) continue;
buffer[n++] = c;
if (n == sizeof(header)) {
matched = memcmp(buffer, header, sizeof(header)) == 0;
if (matched) {
n = 0;
} else {
memmove(buffer, buffer + 1, --n);
}
}
continue;
}
if (n > 3 && c == '.' && buffer[n - 1] == '.' && buffer[n - 2] == '.') {
// SEARCHING...
n = 0;
timeout += OBD_TIMEOUT_LONG;
} else {
if (n == bufsize - 1) {
int bytesDumped = dumpLine(buffer, n);
n -= bytesDumped;
#if VERBOSE_LINK
Serial.println("[SPI BUFFER FULL]");
#endif
}
buffer[n++] = c;
}
}
digitalWrite(PIN_LINK_SPI_CS, HIGH);
portEXIT_CRITICAL(&m);
} while (!eos && millis() - t < timeout);
#if VERBOSE_LINK
if (!eos) {
// timed out
Serial.println("[SPI RECV TIMEOUT]");
}
#endif
buffer[n] = 0;
#if VERBOSE_LINK
Serial.print("[SPI RECV]");
Serial.println(buffer);
#endif
// wait for READY pin to restore high level so SPI bus is released
if (eos) while (digitalRead(PIN_LINK_SPI_READY) == LOW) delay(1);
return n;
}
bool CLink_SPI::send(const char* str)
{
if (digitalRead(PIN_LINK_SPI_READY) == LOW) {
#if VERBOSE_LINK
Serial.println("[SPI NOT READY]");
#endif
return false;
}
portMUX_TYPE m = portMUX_INITIALIZER_UNLOCKED;
#if VERBOSE_LINK
Serial.print("[SPI SEND]");
Serial.println(str);
#endif
int len = strlen(str);
uint8_t tail = 0x1B;
portENTER_CRITICAL(&m);
digitalWrite(PIN_LINK_SPI_CS, LOW);
delay(1);
SPI.writeBytes((uint8_t*)header, sizeof(header));
SPI.writeBytes((uint8_t*)str, len);
SPI.writeBytes((uint8_t*)&tail, 1);
delay(1);
digitalWrite(PIN_LINK_SPI_CS, HIGH);
portEXIT_CRITICAL(&m);
return true;
}
int CLink_SPI::sendCommand(const char* cmd, char* buf, int bufsize, unsigned int timeout)
{
uint32_t t = millis();
int n = 0;
for (byte i = 0; i < 30 && millis() - t < timeout; i++) {
if (!send(cmd)) {
delay(50);
continue;
}
n = receive(buf, bufsize, timeout);
if (n == -1) {
Serial.print('_');
n = 0;
continue;
}
if (n == 0 || (buf[1] != 'O' && !memcmp(buf + 5, "NO DATA", 7))) {
// data not ready
delay(50);
} else {
break;
}
}
return n;
}
void FreematicsESP32::gpsEnd()
{
// uninitialize
if ((m_flags & FLAG_GNSS_USE_LINK)) {
if (link) {
char buf[16];
link->sendCommand("ATGPSOFF", buf, sizeof(buf), 0);
}
} else {
taskGPS.destroy();
if (!(m_flags & FLAG_GNSS_SOFT_SERIAL)) uart_driver_delete(GPS_UART_NUM);
/*
if (nmeaBuffer) {
nmeaBufferMutex.lock();
delete nmeaBuffer;
nmeaBuffer = 0;
nmeaBufferMutex.unlock();
}
*/
digitalWrite(m_pinGPSPower, LOW);
}
}
bool FreematicsESP32::gpsBegin(int baudrate)
{
// try co-processor GPS link
if (m_flags & FLAG_USE_COPROC) {
char buf[128];
link->sendCommand("ATGPSON", buf, sizeof(buf), 100);
m_flags |= FLAG_GNSS_USE_LINK;
uint32_t t = millis();
bool success = false;
do {
if (gpsGetNMEA(buf, sizeof(buf)) > 0 && strstr(buf, ("$G"))) {
success = true;
break;
}
} while (millis() - t < 1000);
if (success) {
gpsData = new GPS_DATA;
memset(gpsData, 0, sizeof(GPS_DATA));
m_pinGPSPower = 0;
return true;
}
link->sendCommand("ATGPSOFF", buf, sizeof(buf), 100);
m_flags &= ~FLAG_GNSS_USE_LINK;
}
// try GPS receiver on molex connector
if (m_pinGPSPower) pinMode(m_pinGPSPower, OUTPUT);
if (!(m_flags & FLAG_GNSS_SOFT_SERIAL)) {
uart_config_t uart_config = {
.baud_rate = baudrate,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.rx_flow_ctrl_thresh = 122,
};
bool legacy = devType <= 13;
// configure UART parameters
uart_param_config(GPS_UART_NUM, &uart_config);
// set UART pins
uart_set_pin(GPS_UART_NUM, legacy ? PIN_GPS_UART_TXD2 : PIN_GPS_UART_TXD, legacy ? PIN_GPS_UART_RXD2 : PIN_GPS_UART_RXD, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
// install UART driver
uart_driver_install(GPS_UART_NUM, UART_BUF_SIZE, 0, 0, NULL, 0);
// turn on GPS power
if (m_pinGPSPower) digitalWrite(m_pinGPSPower, HIGH);
delay(100);
// start decoding task
taskGPS.create(gps_decode_task, "GPS", 1);
} else {
pinMode(PIN_GPS_UART_RXD, INPUT);
pinMode(PIN_GPS_UART_TXD, OUTPUT);
setTxPinHigh();
// turn on GPS power
delay(20);
if (m_pinGPSPower) digitalWrite(m_pinGPSPower, HIGH);
delay(100);
// start GPS decoding task (soft serial)
taskGPS.create(gps_soft_decode_task, "GPS",1);
}
// test run for a while to see if there is data decoded
uint16_t s1 = 0, s2 = 0;
gps.stats(&s1, 0);
for (int i = 0; i < 10; i++) {
if (m_flags & FLAG_GNSS_SOFT_SERIAL) {
// switch M8030 GNSS to 38400bps
const uint8_t packet1[] = {0x0, 0x0, 0xB5, 0x62, 0x06, 0x0, 0x14, 0x0, 0x01, 0x0, 0x0, 0x0, 0xD0, 0x08, 0x0, 0x0, 0x0, 0x96, 0x0, 0x0, 0x7, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x93, 0x90};
const uint8_t packet2[] = {0xB5, 0x62, 0x06, 0x0, 0x1, 0x0, 0x1, 0x8, 0x22};
for (int i = 0; i < sizeof(packet1); i++) softSerialTx(baudrate, packet1[i]);
delay(10);
for (int i = 0; i < sizeof(packet2); i++) softSerialTx(baudrate, packet2[i]);
}
delay(200);
gps.stats(&s2, 0);
if (s1 != s2) {
// data is coming in
if (!gpsData) gpsData = new GPS_DATA;
memset(gpsData, 0, sizeof(GPS_DATA));
if (!nmeaBuffer) nmeaBuffer = new char[NMEA_BUF_SIZE];
nmeaBytes = 0;
return true;
}
}
// when no data coming in
gpsEnd();
return false;
}
void FreematicsESP32::getCurrentUTC(GPS_DATA** pgd){
*pgd = gpsData;
gps.get_datetime((unsigned long*)&gpsData->date, (unsigned long*)&gpsData->time, 0);
}
bool FreematicsESP32::gpsGetData(GPS_DATA** pgd)
{
if (!gpsData) return false;
if (pgd) *pgd = gpsData;
if (m_flags & FLAG_GNSS_USE_LINK) {
char buf[160];
if (link->sendCommand("ATGPS\r", buf, sizeof(buf), 100) == 0) {
return false;
}
char *s = strstr(buf, "$GNIFO,");
if (!s) return false;
s += 7;
float lat = 0;
float lng = 0;
float alt = 0;
bool good = false;
do {
uint32_t date = atoi(s);
if (!(s = strchr(s, ','))) break;
uint32_t time = atoi(++s);
if (!(s = strchr(s, ','))) break;
if (!date) break;
gpsData->date = date;
gpsData->time = time;
lat = (float)atoi(++s) / 1000000;
if (!(s = strchr(s, ','))) break;
lng = (float)atoi(++s) / 1000000;
if (!(s = strchr(s, ','))) break;
alt = (float)atoi(++s) / 100;
good = true;
if (!(s = strchr(s, ','))) break;
gpsData->speed = (float)atoi(++s) / 100;
if (!(s = strchr(s, ','))) break;
gpsData->heading = atoi(++s) / 100;
if (!(s = strchr(s, ','))) break;
gpsData->sat = atoi(++s);
if (!(s = strchr(s, ','))) break;
gpsData->hdop = atoi(++s);
} while(0);
if (good && (gpsData->lat || gpsData->lng || gpsData->alt)) {
// filter out invalid coordinates
good = (abs(lat * 1000000 - gpsData->lat * 1000000) < 100000 && abs(lng * 1000000 - gpsData->lng * 1000000) < 100000);
}
if (!good) return false;
gpsData->lat = lat;
gpsData->lng = lng;
gpsData->alt = alt;
return true;
} else {
gps.stats(&gpsData->sentences, &gpsData->errors);
if (!gpsPendingData) return false;
long lat, lng;
bool good = true;
gps.get_position(&lat, &lng, 0);
if (gpsData->lat || gpsData->lng) {
// filter out invalid coordinates
good = (abs(lat - gpsData->lat * 1000000) < 100000 && abs(lng - gpsData->lng * 1000000) < 100000);
}
if (!good) return false;
gpsData->ts = millis();
gpsData->lat = (float)lat / 1000000;
gpsData->lng = (float)lng / 1000000;
gps.get_datetime((unsigned long*)&gpsData->date, (unsigned long*)&gpsData->time, 0);
long alt = gps.altitude();
if (alt != TinyGPS::GPS_INVALID_ALTITUDE) gpsData->alt = (float)alt / 100;
unsigned long knot = gps.speed();
if (knot != TinyGPS::GPS_INVALID_SPEED) gpsData->speed = (float)knot / 100;
unsigned long course = gps.course();
if (course < 36000) gpsData->heading = course / 100;
unsigned short sat = gps.satellites();
if (sat != TinyGPS::GPS_INVALID_SATELLITES) gpsData->sat = sat;
unsigned long hdop = gps.hdop();
gpsData->hdop = hdop > 2550 ? 255 : hdop / 10;
gpsPendingData = 0;
return true;
}
}
int FreematicsESP32::gpsGetNMEA(char* buffer, int bufsize)
{
if (m_flags & FLAG_GNSS_USE_LINK) {
return link->sendCommand("ATGRR\r", buffer, bufsize, 200);
} else {
int bytes = 0;
if (nmeaBytes > 0) {
if (bufsize < nmeaBytes) {
nmeaBufferMutex.lock();
memcpy(buffer, nmeaBuffer, bytes = bufsize);
memmove(nmeaBuffer, nmeaBuffer + bufsize, nmeaBytes -= bufsize);
nmeaBufferMutex.unlock();
} else {
nmeaBufferMutex.lock();
memcpy(buffer, nmeaBuffer, bytes = nmeaBytes);
nmeaBytes = 0;
nmeaBufferMutex.unlock();
}
}
return bytes;
}
}
void FreematicsESP32::gpsSendCommand(const char* string, int len)
{
#if !GPS_SOFT_SERIAL
if (taskGPS.running())
uart_write_bytes(GPS_UART_NUM, string, len);
#endif
}
bool FreematicsESP32::xbBegin(unsigned long baudrate, int pinRx, int pinTx)
{
uart_config_t uart_config = {
.baud_rate = (int)baudrate,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.rx_flow_ctrl_thresh = 122,
};
#if VERBOSE_XBEE
Serial.print("Bee Rx:");
Serial.print(pinRx);
Serial.print(" Tx:");
Serial.println(pinTx);
#endif
//Configure UART parameters
uart_param_config(BEE_UART_NUM, &uart_config);
//Set UART pins
uart_set_pin(BEE_UART_NUM, pinTx, pinRx, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
//Install UART driver
uart_driver_install(BEE_UART_NUM, UART_BUF_SIZE, 0, 0, NULL, 0);
#ifdef PIN_BEE_PWR
pinMode(PIN_BEE_PWR, OUTPUT);
digitalWrite(PIN_BEE_PWR, LOW);
#endif
return true;
}
void FreematicsESP32::xbEnd()
{
uart_driver_delete(BEE_UART_NUM);
digitalWrite(PIN_BEE_PWR, LOW);
}
void FreematicsESP32::xbWrite(const char* cmd)
{
uart_write_bytes(BEE_UART_NUM, cmd, strlen(cmd));
#if VERBOSE_XBEE
Serial.print("=== SENT@");
Serial.print(millis());
Serial.println(" ===");
Serial.println(cmd);
Serial.println("==================");
#endif
}
void FreematicsESP32::xbWrite(const char* data, int len)
{
uart_write_bytes(BEE_UART_NUM, data, len);
}
int FreematicsESP32::xbRead(char* buffer, int bufsize, unsigned int timeout)
{
int recv = 0;
uint32_t t = millis();
do {
uint8_t c;
int len = uart_read_bytes(BEE_UART_NUM, &c, 1, 0);
if (len == 1) {
if (c >= 0xA && c <= 0x7E) {
buffer[recv++] = c;
}
} else if (recv > 0) {
break;
}
} while (recv < bufsize && millis() - t < timeout);
return recv;
}
int FreematicsESP32::xbReceive(char* buffer, int bufsize, unsigned int timeout, const char** expected, byte expectedCount)
{
int bytesRecv = 0;
uint32_t t = millis();
do {
if (bytesRecv >= bufsize - 16) {
bytesRecv -= dumpLine(buffer, bytesRecv);
}
int n = xbRead(buffer + bytesRecv, bufsize - bytesRecv - 1, 50);
if (n > 0) {
#if VERBOSE_XBEE
Serial.print("=== RECV@");
Serial.print(millis());
Serial.println(" ===");
buffer[bytesRecv + n] = 0;
Serial.print(buffer + bytesRecv);
Serial.println("==================");
#endif
bytesRecv += n;
buffer[bytesRecv] = 0;
for (byte i = 0; i < expectedCount; i++) {
// match expected string(s)
if (expected[i] && strstr(buffer, expected[i])) return i + 1;
}
} else if (n == -1) {
// an erroneous reading
#if VERBOSE_XBEE
Serial.print("RECV ERROR");
#endif
break;
}
} while (millis() - t < timeout);
buffer[bytesRecv] = 0;
return 0;
}
void FreematicsESP32::xbPurge()
{
uart_flush(BEE_UART_NUM);
}
void FreematicsESP32::xbTogglePower()
{
#ifdef PIN_BEE_PWR
digitalWrite(PIN_BEE_PWR, HIGH);
delay(100);
#if VERBOSE_XBEE
Serial.println("xBee power pin set to low");
#endif
digitalWrite(PIN_BEE_PWR, LOW);
delay(1010);
#if VERBOSE_XBEE
Serial.println("xBee power pin set to high");
#endif
digitalWrite(PIN_BEE_PWR, HIGH);
#endif
delay(100);
digitalWrite(PIN_BEE_PWR, LOW);
}
void FreematicsESP32::buzzer(int freq)
{
if (freq) {
ledcWriteTone(0, 2000);
ledcWrite(0, 255);
} else {
ledcWrite(0, 0);
}
}
byte FreematicsESP32::getDeviceType()
{
if (!link) return 0;
char buf[32];
if (link->sendCommand("ATI\r", buf, sizeof(buf), 1000)) {
char *p = strstr(buf, "OBD");
if (p && (p = strchr(p, ' '))) {
p += 2;
if (isdigit(*p) && *(p + 1) == '.' && isdigit(*(p + 2))) {
devType = (*p - '0') * 10 + (*(p + 2) - '0');
return devType;
}
}
}
return 0;
}
bool FreematicsESP32::reactivateLink()
{
if (!link) return false;
for (int n = 0; n < 30; n++) {
char buf[32];
if (link->sendCommand("ATI\r", buf, sizeof(buf), 1000)) return true;
}
return false;
}
void FreematicsESP32::resetLink()
{
if (devType >= 14) {
digitalWrite(PIN_LINK_RESET, LOW);
delay(50);
digitalWrite(PIN_LINK_RESET, HIGH);
} else {
char buf[16];
if (link) link->sendCommand("ATR\r", buf, sizeof(buf), 100);
}
}
bool FreematicsESP32::begin(bool useGNSS, bool useCellular, bool useCoProc)
{
if (link) return false;
pinMode(PIN_LINK_RESET, OUTPUT);
digitalWrite(PIN_LINK_RESET, HIGH);
// set watchdog timeout to 600 seconds
esp_task_wdt_init(600, 0);
m_flags = 0;
m_pinGPSPower = PIN_GPS_POWER;
if (useCoProc) do {
CLink_UART *linkUART = new CLink_UART;
//linkUART->begin(115200);
//char buf[16];
// lift baudrate to 25600bps
//linkUART->sendCommand("ATBR1 3E800\r", buf, sizeof(buf), 50);
//linkUART->end();
if (linkUART->begin()) {
link = linkUART;
for (byte n = 0; n < 3 && !getDeviceType(); n++);
if (devType) {
if (devType == 11 || devType >= 13) {
// set up buzzer
ledcSetup(0, 2000, 8);
ledcAttachPin(PIN_BUZZER, 0);
} else {
m_pinGPSPower = PIN_GPS_POWER2;
}
m_flags |= (FLAG_USE_UART_LINK | FLAG_GNSS_SOFT_SERIAL | FLAG_USE_COPROC);
break;
}
link = 0;
linkUART->end();
}
delete linkUART;
linkUART = 0;
CLink_SPI *linkSPI = new CLink_SPI;
if (linkSPI->begin()) {
link = linkSPI;
for (byte n = 0; n < 10 && !getDeviceType(); n++);
if (devType) {
m_pinGPSPower = PIN_GPS_POWER2;
m_flags |= FLAG_USE_COPROC;
break;
}
link = 0;
linkSPI->end();
}
delete linkSPI;
linkSPI = 0;
} while(0);
if (useCellular) {
int pinRx = PIN_BEE_UART_RXD;
int pinTx = PIN_BEE_UART_TXD;
if (devType == 13) {
pinRx = PIN_BEE_UART_RXD2;
pinTx = PIN_BEE_UART_TXD2;
} else if ((devType == 11 && !(m_flags & FLAG_USE_UART_LINK)) || devType == 0) {
pinRx = PIN_BEE_UART_RXD3;
pinTx = PIN_BEE_UART_TXD3;
}
xbBegin(XBEE_BAUDRATE, pinRx, pinTx);
m_flags |= FLAG_USE_CELL;
}
if (useGNSS) {
m_flags |= FLAG_USE_GNSS;
}
return devType != 0;
}