FreematicsMEMS.cpp
58.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
/*************************************************************************
* Freematics MEMS motion sensor helper classes
* Distributed under BSD license
* Visit https://freematics.com for more information
* (C)2016-2020 Stanley Huang <stanley@freematics.com.au>
*************************************************************************/
#include "FreematicsMEMS.h"
#include <driver/i2c.h>
#include "utility/ICM_20948_REGISTERS.h"
#include "utility/AK09916_REGISTERS.h"
#define WRITE_BIT I2C_MASTER_WRITE /*!< I2C master write */
#define READ_BIT I2C_MASTER_READ /*!< I2C master read */
#define ACK_CHECK_EN 0x1 /*!< I2C master will check ack from slave*/
#define ACK_CHECK_DIS 0x0 /*!< I2C master will not check ack from slave */
#define ACK_VAL (i2c_ack_type_t)0x0 /*!< I2C ack value */
#define NACK_VAL (i2c_ack_type_t)0x1 /*!< I2C nack value */
// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
// device orientation
void CQuaterion::MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
{
uint32_t now = millis();
deltat = ((float)(now - lastUpdate)/1000.0f); // set integration time by time elapsed since last filter update
lastUpdate = now;
float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
float norm;
float hx, hy, _2bx, _2bz;
float s1, s2, s3, s4;
float qDot1, qDot2, qDot3, qDot4;
// Auxiliary variables to avoid repeated arithmetic
float _2q1mx;
float _2q1my;
float _2q1mz;
float _2q2mx;
float _4bx;
float _4bz;
float _2q1 = 2.0f * q1;
float _2q2 = 2.0f * q2;
float _2q3 = 2.0f * q3;
float _2q4 = 2.0f * q4;
float _2q1q3 = 2.0f * q1 * q3;
float _2q3q4 = 2.0f * q3 * q4;
float q1q1 = q1 * q1;
float q1q2 = q1 * q2;
float q1q3 = q1 * q3;
float q1q4 = q1 * q4;
float q2q2 = q2 * q2;
float q2q3 = q2 * q3;
float q2q4 = q2 * q4;
float q3q3 = q3 * q3;
float q3q4 = q3 * q4;
float q4q4 = q4 * q4;
// Normalise accelerometer measurement
norm = sqrtf(ax * ax + ay * ay + az * az);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f/norm;
ax *= norm;
ay *= norm;
az *= norm;
// Normalise magnetometer measurement
norm = sqrtf(mx * mx + my * my + mz * mz);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f/norm;
mx *= norm;
my *= norm;
mz *= norm;
// Reference direction of Earth's magnetic field
_2q1mx = 2.0f * q1 * mx;
_2q1my = 2.0f * q1 * my;
_2q1mz = 2.0f * q1 * mz;
_2q2mx = 2.0f * q2 * mx;
hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
_2bx = sqrtf(hx * hx + hy * hy);
_2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
_4bx = 2.0f * _2bx;
_4bz = 2.0f * _2bz;
// Gradient decent algorithm corrective step
s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
norm = sqrtf(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
norm = 1.0f/norm;
s1 *= norm;
s2 *= norm;
s3 *= norm;
s4 *= norm;
// Compute rate of change of quaternion
qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
// Integrate to yield quaternion
q1 += qDot1 * deltat;
q2 += qDot2 * deltat;
q3 += qDot3 * deltat;
q4 += qDot4 * deltat;
norm = sqrtf(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
norm = 1.0f/norm;
q[0] = q1 * norm;
q[1] = q2 * norm;
q[2] = q3 * norm;
q[3] = q4 * norm;
}
void CQuaterion::getOrientation(ORIENTATION* ori)
{
ori->yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]) * 180.0f / PI;
ori->pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])) * 180.0f / PI;
ori->roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]) * 180.0f / PI;
}
/*******************************************************************************
Base I2C MEMS class
*******************************************************************************/
#define WRITE_BIT I2C_MASTER_WRITE /*!< I2C master write */
#define READ_BIT I2C_MASTER_READ /*!< I2C master read */
#define ACK_CHECK_EN 0x1 /*!< I2C master will check ack from slave*/
#define ACK_CHECK_DIS 0x0 /*!< I2C master will not check ack from slave */
#define ACK_VAL (i2c_ack_type_t)0x0 /*!< I2C ack value */
#define NACK_VAL (i2c_ack_type_t)0x1 /*!< I2C nack value */
bool MEMS_I2C::initI2C(unsigned long clock)
{
i2c_port_t i2c_master_port = I2C_NUM_0;
i2c_config_t conf;
conf.mode = I2C_MODE_MASTER;
conf.sda_io_num = (gpio_num_t)21;
conf.sda_pullup_en = GPIO_PULLUP_ENABLE;
conf.scl_io_num = (gpio_num_t)22;
conf.scl_pullup_en = GPIO_PULLUP_ENABLE;
conf.master.clk_speed = clock;
return i2c_param_config(i2c_master_port, &conf) == ESP_OK &&
i2c_driver_install(i2c_master_port, conf.mode, 0, 0, 0) == ESP_OK;
}
void MEMS_I2C::uninitI2C()
{
i2c_driver_delete((i2c_port_t)I2C_NUM_0);
}
/*******************************************************************************
MPU-9250 class functions
*******************************************************************************/
//==============================================================================
//====== Set of useful function to access acceleration. gyroscope, magnetometer,
//====== and temperature data
//==============================================================================
void MPU9250::readAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
void MPU9250::readGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
void MPU9250::readMagData(int16_t * destination)
{
if(readByteAK(AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
readBytesAK(AK8963_XOUT_L, 7, rawData); // Read the six raw data and ST2 registers sequentially into data array
uint8_t c = rawData[6]; // End data read by reading ST2 register
if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
}
}
int16_t MPU9250::readTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return ((int16_t)rawData[0] << 8) | rawData[1]; // Turn the MSB and LSB into a 16-bit value
}
bool MPU9250::initAK8963(float * destination)
{
if (readByteAK(WHO_AM_I_AK8963) != 0x48) {
return false;
}
// First extract the factory calibration for each magnetometer axis
uint8_t rawData[3]; // x/y/z gyro calibration data stored here
writeByteAK(AK8963_CNTL, 0x00); // Power down magnetometer
delay(10);
writeByteAK(AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
delay(10);
// Read the x-, y-, and z-axis calibration values
/*
if (!readBytesAK(AK8963_ASAX, 3, &rawData[0], 3000)) {
return false;
}
*/
rawData[0] = readByteAK(AK8963_ASAX);
rawData[1] = readByteAK(AK8963_ASAY);
rawData[2] = readByteAK(AK8963_ASAZ);
destination[0] = (float)(rawData[0] - 128)/256. + 1.; // Return x-axis sensitivity adjustment values, etc.
destination[1] = (float)(rawData[1] - 128)/256. + 1.;
destination[2] = (float)(rawData[2] - 128)/256. + 1.;
writeByteAK(AK8963_CNTL, 0x00); // Power down magnetometer
delay(10);
// Configure the magnetometer for continuous read and highest resolution
// set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
// and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
writeByteAK(AK8963_CNTL, MFS_16BITS << 4 | Mmode); // Set magnetometer data resolution and sample ODR
delay(10);
return true;
}
// Function which accumulates gyro and accelerometer data after device
// initialization. It calculates the average of the at-rest readings and then
// loads the resulting offsets into accelerometer and gyro bias registers.
void MPU9250::calibrateMPU9250(float * gyroBias, float * accelBias)
{
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
uint16_t ii, packet_count, fifo_count;
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
// reset device
// Write a one to bit 7 reset bit; toggle reset device
writeByte(PWR_MGMT_1, 0x80);
delay(100);
// get stable time source; Auto select clock source to be PLL gyroscope
// reference if ready else use the internal oscillator, bits 2:0 = 001
writeByte(PWR_MGMT_1, 0x01);
writeByte(PWR_MGMT_2, 0x00);
delay(200);
// Configure device for bias calculation
writeByte(INT_ENABLE, 0x00); // Disable all interrupts
writeByte(FIFO_EN, 0x00); // Disable FIFO
writeByte(PWR_MGMT_1, 0x00); // Turn on internal clock source
writeByte(I2C_MST_CTRL, 0x00); // Disable master
writeByte(USER_CTRL, 0x00); // Disable FIFO and I2C master modes
writeByte(USER_CTRL, 0x2C); // Reset FIFO and DMP
delay(15);
// Configure MPU6050 gyro and accelerometer for bias calculation
writeByte(CONFIG, 0x01); // Set low-pass filter to 188 Hz
writeByte(SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
writeByte(GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
writeByte(ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
uint16_t accelsensitivity = 16384; // = 16384 LSB/g
// Configure FIFO to capture accelerometer and gyro data for bias calculation
writeByte(USER_CTRL, 0x40); // Enable FIFO
writeByte(FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150)
delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes
// At end of sample accumulation, turn off FIFO sensor read
writeByte(FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
readBytes(FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
fifo_count = ((uint16_t)data[0] << 8) | data[1];
packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
for (ii = 0; ii < packet_count; ii++)
{
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
readBytes(FIFO_R_W, 12, &data[0]); // read data for averaging
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ); // Form signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] );
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] );
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] );
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] );
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]);
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
gyro_bias[0] += (int32_t) gyro_temp[0];
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
accel_bias[1] /= (int32_t) packet_count;
accel_bias[2] /= (int32_t) packet_count;
gyro_bias[0] /= (int32_t) packet_count;
gyro_bias[1] /= (int32_t) packet_count;
gyro_bias[2] /= (int32_t) packet_count;
if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) accelsensitivity;}
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
data[3] = (-gyro_bias[1]/4) & 0xFF;
data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
data[5] = (-gyro_bias[2]/4) & 0xFF;
// Push gyro biases to hardware registers
writeByte(XG_OFFSET_H, data[0]);
writeByte(XG_OFFSET_L, data[1]);
writeByte(YG_OFFSET_H, data[2]);
writeByte(YG_OFFSET_L, data[3]);
writeByte(ZG_OFFSET_H, data[4]);
writeByte(ZG_OFFSET_L, data[5]);
// Output scaled gyro biases for display in the main program
gyroBias[0] = (float) gyro_bias[0]/(float) gyrosensitivity;
gyroBias[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
gyroBias[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.
int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
readBytes(XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(YA_OFFSET_H, 2, &data[0]);
accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(ZA_OFFSET_H, 2, &data[0]);
accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
for(ii = 0; ii < 3; ii++) {
if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
}
// Construct total accelerometer bias, including calculated average accelerometer bias from above
accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
accel_bias_reg[1] -= (accel_bias[1]/8);
accel_bias_reg[2] -= (accel_bias[2]/8);
data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
data[1] = (accel_bias_reg[0]) & 0xFF;
data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
data[3] = (accel_bias_reg[1]) & 0xFF;
data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
data[5] = (accel_bias_reg[2]) & 0xFF;
data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
// Apparently this is not working for the acceleration biases in the MPU-9250
// Are we handling the temperature correction bit properly?
// Push accelerometer biases to hardware registers
writeByte(XA_OFFSET_H, data[0]);
writeByte(XA_OFFSET_L, data[1]);
writeByte(YA_OFFSET_H, data[2]);
writeByte(YA_OFFSET_L, data[3]);
writeByte(ZA_OFFSET_H, data[4]);
writeByte(ZA_OFFSET_L, data[5]);
// Output scaled accelerometer biases for display in the main program
accelBias[0] = (float)accel_bias[0]/(float)accelsensitivity;
accelBias[1] = (float)accel_bias[1]/(float)accelsensitivity;
accelBias[2] = (float)accel_bias[2]/(float)accelsensitivity;
}
// Accelerometer and gyroscope self test; check calibration wrt factory settings
void MPU9250::MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
uint8_t selfTest[6];
int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
float factoryTrim[6];
uint8_t FS = 0;
writeByte(SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
writeByte(CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
writeByte(GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
writeByte(ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
writeByte(ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
readBytes(ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
aAvg[ii] /= 200;
gAvg[ii] /= 200;
}
// Configure the accelerometer for self-test
writeByte(ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
writeByte(GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
delay(25); // Delay a while to let the device stabilize
for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
readBytes(ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
aSTAvg[ii] /= 200;
gSTAvg[ii] /= 200;
}
// Configure the gyro and accelerometer for normal operation
writeByte(ACCEL_CONFIG, 0x00);
writeByte(GYRO_CONFIG, 0x00);
delay(25); // Delay a while to let the device stabilize
// Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
selfTest[0] = readByte(SELF_TEST_X_ACCEL); // X-axis accel self-test results
selfTest[1] = readByte(SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
selfTest[2] = readByte(SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
selfTest[3] = readByte(SELF_TEST_X_GYRO); // X-axis gyro self-test results
selfTest[4] = readByte(SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
selfTest[5] = readByte(SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
// Retrieve factory self-test value from self-test code reads
factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
// To get percent, must multiply by 100
for (int i = 0; i < 3; i++) {
destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
}
}
void MPU9250::writeByte(uint8_t subAddress, uint8_t data)
{
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_EN);
// write sub-address and data
uint8_t buf[2] = {subAddress, data};
i2c_master_write(cmd, buf, sizeof(buf), ACK_CHECK_EN);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
}
uint8_t MPU9250::readByte(uint8_t subAddress)
{
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
// read data
uint8_t data = 0;
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
i2c_master_read_byte(cmd, &data, NACK_VAL);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return data;
}
bool MPU9250::readBytes(uint8_t subAddress, uint8_t count, uint8_t * dest)
{
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if (ret != ESP_OK) return false;
// read data
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MPU9250_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
if (count > 1) {
i2c_master_read(cmd, dest, count - 1, ACK_VAL);
}
i2c_master_read_byte(cmd, dest + count - 1, NACK_VAL);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret == ESP_OK;
}
void MPU9250::writeByteAK(uint8_t subAddress, uint8_t data)
{
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_EN);
// write sub-address and data
uint8_t buf[2] = {subAddress, data};
i2c_master_write(cmd, buf, sizeof(buf), ACK_CHECK_EN);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
}
uint8_t MPU9250::readByteAK(uint8_t subAddress)
{
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
// read data
uint8_t data = 0;
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
i2c_master_read_byte(cmd, &data, NACK_VAL);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return data;
}
bool MPU9250::readBytesAK(uint8_t subAddress, uint8_t count, uint8_t * dest)
{
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | WRITE_BIT, ACK_CHECK_DIS);
i2c_master_write_byte(cmd, subAddress, ACK_CHECK_EN);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if (ret != ESP_OK) return false;
// read data
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( AK8963_ADDRESS << 1 ) | READ_BIT, ACK_CHECK_EN);
if (count > 1) {
i2c_master_read(cmd, dest, count - 1, ACK_VAL);
}
i2c_master_read_byte(cmd, dest + count - 1, NACK_VAL);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret == ESP_OK;
}
void MPU9250::init()
{
// wake up device
writeByte(PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
delay(100); // Wait for all registers to reset
// get stable time source
writeByte(PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else
delay(200);
// Configure Gyro and Thermometer
// Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively;
// minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot
// be higher than 1 / 0.0059 = 170 Hz
// DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both
// With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz
writeByte(CONFIG, 0x03);
// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
writeByte(SMPLRT_DIV, 0x04); // Use a 200 Hz rate; a rate consistent with the filter update rate
// determined inset in CONFIG above
// Set gyroscope full scale range
// Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
uint8_t c = readByte(GYRO_CONFIG); // get current GYRO_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x02; // Clear Fchoice bits [1:0]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Gscale << 3; // Set full scale range for the gyro
// c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
writeByte(GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register
// Set accelerometer full-scale range configuration
c = readByte(ACCEL_CONFIG); // get current ACCEL_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Ascale << 3; // Set full scale range for the accelerometer
writeByte(ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value
// Set accelerometer sample rate configuration
// It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
c = readByte(ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
writeByte(ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
// but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
// Configure Interrupts and Bypass Enable
// Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared,
// clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips
// can join the I2C bus and all can be controlled by the Arduino as master
writeByte(INT_PIN_CFG, 0x22);
writeByte(INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
delay(100);
}
byte MPU9250::begin(bool fusion)
{
if (!initI2C(100000)) return 0;
byte ret = 0;
for (byte attempt = 0; attempt < 2; attempt++) {
//float SelfTest[6];
//MPU9250SelfTest(SelfTest);
byte c = readByte(WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
if (c != 0x68 && c != 0x71) continue;
calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
init();
if (c == 0x71 && initAK8963(magCalibration))
ret = 2;
else
ret = 1;
break;
}
if (ret && fusion && !quaterion) {
quaterion = new CQuaterion;
}
return ret;
}
bool MPU9250::read(float* acc, float* gyr, float* mag, float* temp, ORIENTATION* ori)
{
if (acc) {
readAccelData(accelCount);
acc[0] = (float)accelCount[0]*aRes; // - accelBias[0]; // get actual g value, this depends on scale being set
acc[1] = (float)accelCount[1]*aRes; // - accelBias[1];
acc[2] = (float)accelCount[2]*aRes; // - accelBias[2];
}
if (gyr) {
readGyroData(gyroCount);
gyr[0] = (float)gyroCount[0]*gRes; // get actual gyro value, this depends on scale being set
gyr[1] = (float)gyroCount[1]*gRes;
gyr[2] = (float)gyroCount[2]*gRes;
}
if (mag) {
float magbias[3];
magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated
magbias[1] = +120.; // User environmental x-axis correction in milliGauss
magbias[2] = +125.; // User environmental x-axis correction in milliGauss
// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
readMagData(magCount);
mag[0] = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
mag[1] = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
mag[2] = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
}
if (temp) {
int t = readTempData();
*temp = (float)t / 333.87 + 21;
}
if (quaterion && acc && gyr && mag) {
quaterion->MadgwickQuaternionUpdate(acc[0], acc[1], acc[2], gyr[0]*PI/180.0f, gyr[1]*PI/180.0f, gyr[2]*PI/180.0f, mag[0], mag[1], mag[2]);
quaterion->getOrientation(ori);
}
return true;
}
/*******************************************************************************
ICM-20948 class functions
*******************************************************************************/
// serif functions for the I2C and SPI classes
ICM_20948_Status_e ICM_20948_write_I2C(uint8_t reg, uint8_t* data, uint32_t len, void* user){
if(user == NULL){ return ICM_20948_Stat_ParamErr; }
uint8_t addr = ((ICM_20948_I2C*)user)->_addr;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( addr << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
i2c_master_write(cmd, data, len, ACK_CHECK_DIS);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_Err;
}
ICM_20948_Status_e ICM_20948_read_I2C(uint8_t reg, uint8_t* buff, uint32_t len, void* user){
if(user == NULL){ return ICM_20948_Stat_ParamErr; }
uint8_t addr = ((ICM_20948_I2C*)user)->_addr;
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( addr << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if (ret != ESP_OK) return ICM_20948_Stat_Err;
// read data
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( addr << 1 ) | READ_BIT, ACK_CHECK_EN);
if (len > 1) {
i2c_master_read(cmd, buff, len - 1, ACK_VAL);
}
i2c_master_read_byte(cmd, buff + len - 1, NACK_VAL);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_NoData;
}
ICM_20948_AGMT_t ICM_20948::getAGMT ( void ){
status = ICM_20948_get_agmt( &_device, &agmt );
if( _has_magnetometer ){
getMagnetometerData( &agmt );
}
return agmt;
}
float ICM_20948::magX ( void ){
return getMagUT(agmt.mag.axes.x);
}
float ICM_20948::magY ( void ){
return getMagUT(agmt.mag.axes.y);
}
float ICM_20948::magZ ( void ){
return getMagUT(agmt.mag.axes.z);
}
float ICM_20948::getMagUT ( int16_t axis_val ){
return (((float)axis_val)*0.15);
}
float ICM_20948::accX ( void ){
return getAccMG(agmt.acc.axes.x);
}
float ICM_20948::accY ( void ){
return getAccMG(agmt.acc.axes.y);
}
float ICM_20948::accZ ( void ){
return getAccMG(agmt.acc.axes.z);
}
float ICM_20948::getAccMG ( int16_t axis_val ){
switch(agmt.fss.a){
case 0 : return (((float)axis_val)/16.384); break;
case 1 : return (((float)axis_val)/8.192); break;
case 2 : return (((float)axis_val)/4.096); break;
case 3 : return (((float)axis_val)/2.048); break;
default : return 0; break;
}
}
float ICM_20948::gyrX ( void ){
return getGyrDPS(agmt.gyr.axes.x);
}
float ICM_20948::gyrY ( void ){
return getGyrDPS(agmt.gyr.axes.y);
}
float ICM_20948::gyrZ ( void ){
return getGyrDPS(agmt.gyr.axes.z);
}
float ICM_20948::getGyrDPS ( int16_t axis_val ){
switch(agmt.fss.g){
case 0 : return (((float)axis_val)/131); break;
case 1 : return (((float)axis_val)/65.5); break;
case 2 : return (((float)axis_val)/32.8); break;
case 3 : return (((float)axis_val)/16.4); break;
default : return 0; break;
}
}
float ICM_20948::temp ( void ){
return getTempC(agmt.tmp.val);
}
float ICM_20948::getTempC ( int16_t val ){
return (((float)val)/333.87) + 21;
}
const char* ICM_20948::statusString ( ICM_20948_Status_e stat ){
ICM_20948_Status_e val;
if( stat == ICM_20948_Stat_NUM){
val = status;
}else{
val = stat;
}
switch(val){
case ICM_20948_Stat_Ok : return "All is well."; break;
case ICM_20948_Stat_Err : return "General Error"; break;
case ICM_20948_Stat_NotImpl : return "Not Implemented"; break;
case ICM_20948_Stat_ParamErr : return "Parameter Error"; break;
case ICM_20948_Stat_WrongID : return "Wrong ID"; break;
case ICM_20948_Stat_InvalSensor : return "Invalid Sensor"; break;
case ICM_20948_Stat_NoData : return "Data Underflow"; break;
case ICM_20948_Stat_SensorNotSupported : return "Sensor Not Supported"; break;
default :
return "Unknown Status"; break;
}
return "None";
}
// Device Level
ICM_20948_Status_e ICM_20948::setBank ( uint8_t bank ){
status = ICM_20948_set_bank( &_device, bank );
return status;
}
ICM_20948_Status_e ICM_20948::swReset ( void ){
status = ICM_20948_sw_reset( &_device );
return status;
}
ICM_20948_Status_e ICM_20948::sleep ( bool on ){
status = ICM_20948_sleep( &_device, on );
return status;
}
ICM_20948_Status_e ICM_20948::lowPower ( bool on ){
status = ICM_20948_low_power( &_device, on );
return status;
}
ICM_20948_Status_e ICM_20948::setClockSource ( ICM_20948_PWR_MGMT_1_CLKSEL_e source ){
status = ICM_20948_set_clock_source( &_device, source );
return status;
}
ICM_20948_Status_e ICM_20948::checkID ( void ){
status = ICM_20948_check_id( &_device );
return status;
}
bool ICM_20948::dataReady ( void ){
status = ICM_20948_data_ready( &_device );
if( status == ICM_20948_Stat_Ok ){ return true; }
return false;
}
uint8_t ICM_20948::getWhoAmI ( void ){
uint8_t retval = 0x00;
status = ICM_20948_get_who_am_i( &_device, &retval );
return retval;
}
bool ICM_20948::isConnected ( void ){
status = checkID();
if( status == ICM_20948_Stat_Ok ){ return true; }
return false;
}
// Internal Sensor Options
ICM_20948_Status_e ICM_20948::setSampleMode ( uint8_t sensor_id_bm, uint8_t lp_config_cycle_mode ){
status = ICM_20948_set_sample_mode( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, (ICM_20948_LP_CONFIG_CYCLE_e)lp_config_cycle_mode );
return status;
}
ICM_20948_Status_e ICM_20948::setFullScale ( uint8_t sensor_id_bm, ICM_20948_fss_t fss ){
status = ICM_20948_set_full_scale( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, fss );
return status;
}
ICM_20948_Status_e ICM_20948::setDLPFcfg ( uint8_t sensor_id_bm, ICM_20948_dlpcfg_t cfg ){
status = ICM_20948_set_dlpf_cfg( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, cfg );
return status;
}
ICM_20948_Status_e ICM_20948::enableDLPF ( uint8_t sensor_id_bm, bool enable ){
status = ICM_20948_enable_dlpf( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, enable );
return status;
}
ICM_20948_Status_e ICM_20948::setSampleRate ( uint8_t sensor_id_bm, ICM_20948_smplrt_t smplrt ){
status = ICM_20948_set_sample_rate( &_device, (ICM_20948_InternalSensorID_bm)sensor_id_bm, smplrt );
return status;
}
// Interrupts on INT Pin
ICM_20948_Status_e ICM_20948::clearInterrupts ( void ){
ICM_20948_INT_STATUS_t int_stat;
ICM_20948_INT_STATUS_1_t int_stat_1;
// read to clear interrupts
status = ICM_20948_set_bank( &_device, 0 ); if( status != ICM_20948_Stat_Ok ){ return status; }
status = ICM_20948_execute_r( &_device, AGB0_REG_INT_STATUS, (uint8_t*)&int_stat, sizeof(ICM_20948_INT_STATUS_t) ); if( status != ICM_20948_Stat_Ok ){ return status; }
status = ICM_20948_execute_r( &_device, AGB0_REG_INT_STATUS_1, (uint8_t*)&int_stat_1, sizeof(ICM_20948_INT_STATUS_1_t) ); if( status != ICM_20948_Stat_Ok ){ return status; }
// todo: there may be additional interrupts that need to be cleared, like FIFO overflow/watermark
return status;
}
ICM_20948_Status_e ICM_20948::cfgIntActiveLow ( bool active_low ){
ICM_20948_INT_PIN_CFG_t reg;
status = ICM_20948_int_pin_cfg ( &_device, NULL, ® ); // read phase
if(status != ICM_20948_Stat_Ok){ return status; }
reg.INT1_ACTL = active_low; // set the setting
status = ICM_20948_int_pin_cfg ( &_device, ®, NULL ); // write phase
if(status != ICM_20948_Stat_Ok){ return status; }
return status;
}
ICM_20948_Status_e ICM_20948::cfgIntOpenDrain ( bool open_drain ){
ICM_20948_INT_PIN_CFG_t reg;
status = ICM_20948_int_pin_cfg ( &_device, NULL, ® ); // read phase
if(status != ICM_20948_Stat_Ok){ return status; }
reg.INT1_OPEN = open_drain; // set the setting
status = ICM_20948_int_pin_cfg ( &_device, ®, NULL ); // write phase
if(status != ICM_20948_Stat_Ok){ return status; }
return status;
}
ICM_20948_Status_e ICM_20948::cfgIntLatch ( bool latching ){
ICM_20948_INT_PIN_CFG_t reg;
status = ICM_20948_int_pin_cfg ( &_device, NULL, ® ); // read phase
if(status != ICM_20948_Stat_Ok){ return status; }
reg.INT1_LATCH_EN = latching; // set the setting
status = ICM_20948_int_pin_cfg ( &_device, ®, NULL ); // write phase
if(status != ICM_20948_Stat_Ok){ return status; }
return status;
}
ICM_20948_Status_e ICM_20948::cfgIntAnyReadToClear ( bool enabled ){
ICM_20948_INT_PIN_CFG_t reg;
status = ICM_20948_int_pin_cfg ( &_device, NULL, ® ); // read phase
if(status != ICM_20948_Stat_Ok){ return status; }
reg.INT_ANYRD_2CLEAR = enabled; // set the setting
status = ICM_20948_int_pin_cfg ( &_device, ®, NULL ); // write phase
if(status != ICM_20948_Stat_Ok){ return status; }
return status;
}
ICM_20948_Status_e ICM_20948::cfgFsyncActiveLow ( bool active_low ){
ICM_20948_INT_PIN_CFG_t reg;
status = ICM_20948_int_pin_cfg ( &_device, NULL, ® ); // read phase
if(status != ICM_20948_Stat_Ok){ return status; }
reg.ACTL_FSYNC = active_low; // set the setting
status = ICM_20948_int_pin_cfg ( &_device, ®, NULL ); // write phase
if(status != ICM_20948_Stat_Ok){ return status; }
return status;
}
ICM_20948_Status_e ICM_20948::cfgFsyncIntMode ( bool interrupt_mode ){
ICM_20948_INT_PIN_CFG_t reg;
status = ICM_20948_int_pin_cfg ( &_device, NULL, ® ); // read phase
if(status != ICM_20948_Stat_Ok){ return status; }
reg.FSYNC_INT_MODE_EN = interrupt_mode; // set the setting
status = ICM_20948_int_pin_cfg ( &_device, ®, NULL ); // write phase
if(status != ICM_20948_Stat_Ok){ return status; }
return status;
}
// All these individual functions will use a read->set->write method to leave other settings untouched
ICM_20948_Status_e ICM_20948::intEnableI2C ( bool enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.I2C_MST_INT_EN = enable; // change the setting
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
if( en.I2C_MST_INT_EN != enable ){
status = ICM_20948_Stat_Err;
return status;
}
return status;
}
ICM_20948_Status_e ICM_20948::intEnableDMP ( bool enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.DMP_INT1_EN = enable; // change the setting
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
if( en.DMP_INT1_EN != enable ){
status = ICM_20948_Stat_Err;
return status;
}
return status;
}
ICM_20948_Status_e ICM_20948::intEnablePLL ( bool enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.PLL_RDY_EN = enable; // change the setting
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
if( en.PLL_RDY_EN != enable ){
status = ICM_20948_Stat_Err;
return status;
}
return status;
}
ICM_20948_Status_e ICM_20948::intEnableWOM ( bool enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.WOM_INT_EN = enable; // change the setting
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
if( en.WOM_INT_EN != enable ){
status = ICM_20948_Stat_Err;
return status;
}
return status;
}
ICM_20948_Status_e ICM_20948::intEnableWOF ( bool enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.REG_WOF_EN = enable; // change the setting
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
if( en.REG_WOF_EN != enable ){
status = ICM_20948_Stat_Err;
return status;
}
return status;
}
ICM_20948_Status_e ICM_20948::intEnableRawDataReady ( bool enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.RAW_DATA_0_RDY_EN = enable; // change the setting
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
if( en.RAW_DATA_0_RDY_EN != enable ){
Serial.println("mismatch error");
status = ICM_20948_Stat_Err;
return status;
}
return status;
}
ICM_20948_Status_e ICM_20948::intEnableOverflowFIFO ( uint8_t bm_enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.FIFO_OVERFLOW_EN_0 = ((bm_enable >> 0) & 0x01); // change the settings
en.FIFO_OVERFLOW_EN_1 = ((bm_enable >> 1) & 0x01);
en.FIFO_OVERFLOW_EN_2 = ((bm_enable >> 2) & 0x01);
en.FIFO_OVERFLOW_EN_3 = ((bm_enable >> 3) & 0x01);
en.FIFO_OVERFLOW_EN_4 = ((bm_enable >> 4) & 0x01);
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
return status;
}
ICM_20948_Status_e ICM_20948::intEnableWatermarkFIFO ( uint8_t bm_enable ){
ICM_20948_INT_enable_t en; // storage
status = ICM_20948_int_enable( &_device, NULL, &en ); // read phase
if( status != ICM_20948_Stat_Ok ){ return status; }
en.FIFO_WM_EN_0 = ((bm_enable >> 0) & 0x01); // change the settings
en.FIFO_WM_EN_1 = ((bm_enable >> 1) & 0x01);
en.FIFO_WM_EN_2 = ((bm_enable >> 2) & 0x01);
en.FIFO_WM_EN_3 = ((bm_enable >> 3) & 0x01);
en.FIFO_WM_EN_4 = ((bm_enable >> 4) & 0x01);
status = ICM_20948_int_enable( &_device, &en, &en ); // write phase w/ readback
if( status != ICM_20948_Stat_Ok ){ return status; }
return status;
}
// Interface Options
ICM_20948_Status_e ICM_20948::i2cMasterPassthrough ( bool passthrough ){
status = ICM_20948_i2c_master_passthrough ( &_device, passthrough );
return status;
}
ICM_20948_Status_e ICM_20948::i2cMasterEnable ( bool enable ){
status = ICM_20948_i2c_master_enable( &_device, enable );
return status;
}
ICM_20948_Status_e ICM_20948::i2cMasterConfigureSlave ( uint8_t slave, uint8_t addr, uint8_t reg, uint8_t len, bool Rw, bool enable, bool data_only, bool grp, bool swap ){
status = ICM_20948_i2c_master_configure_slave ( &_device, slave, addr, reg, len, Rw, enable, data_only, grp, swap );
return status;
}
ICM_20948_Status_e ICM_20948::i2cMasterSLV4Transaction( uint8_t addr, uint8_t reg, uint8_t* data, uint8_t len, bool Rw, bool send_reg_addr ){
status = ICM_20948_i2c_master_slv4_txn( &_device, addr, reg, data, len, Rw, send_reg_addr );
return status;
}
ICM_20948_Status_e ICM_20948::i2cMasterSingleW ( uint8_t addr, uint8_t reg, uint8_t data ){
status = ICM_20948_i2c_master_single_w( &_device, addr, reg, &data );
return status;
}
uint8_t ICM_20948::i2cMasterSingleR ( uint8_t addr, uint8_t reg ){
uint8_t data;
status = ICM_20948_i2c_master_single_r( &_device, addr, reg, &data );
return data;
}
ICM_20948_Status_e ICM_20948::startupDefault ( void ){
ICM_20948_Status_e retval = ICM_20948_Stat_Ok;
retval = checkID();
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
retval = swReset();
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
delay(50);
retval = sleep( false );
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
retval = lowPower( false );
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
retval = setSampleMode( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), ICM_20948_Sample_Mode_Continuous ); // options: ICM_20948_Sample_Mode_Continuous or ICM_20948_Sample_Mode_Cycled
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; } // sensors: ICM_20948_Internal_Acc, ICM_20948_Internal_Gyr, ICM_20948_Internal_Mst
ICM_20948_fss_t FSS;
FSS.a = gpm2; // (ICM_20948_ACCEL_CONFIG_FS_SEL_e)
FSS.g = dps250; // (ICM_20948_GYRO_CONFIG_1_FS_SEL_e)
retval = setFullScale( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), FSS );
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
ICM_20948_dlpcfg_t dlpcfg;
dlpcfg.a = acc_d473bw_n499bw;
dlpcfg.g = gyr_d361bw4_n376bw5;
retval = setDLPFcfg( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), dlpcfg );
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
retval = enableDLPF( ICM_20948_Internal_Acc, false );
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
retval = enableDLPF( ICM_20948_Internal_Gyr, false );
if( retval != ICM_20948_Stat_Ok ){ status = retval; return status; }
_has_magnetometer = true;
retval = startupMagnetometer();
if(( retval != ICM_20948_Stat_Ok) && ( retval != ICM_20948_Stat_NotImpl )){ status = retval; return status; }
if( retval == ICM_20948_Stat_NotImpl ){
// This is a temporary fix.
// Ultimately we *should* be able to configure the I2C master to handle the
// magnetometer no matter what interface (SPI / I2C) we are using.
// Should try testing I2C master functionality on a bare ICM chip w/o TXS0108 level shifter...
_has_magnetometer = false;
retval = ICM_20948_Stat_Ok; // reset the retval because we handled it in this cases
}
status = retval;
return status;
}
ICM_20948_Status_e ICM_20948::startupMagnetometer ( void ){
return ICM_20948_Stat_NotImpl; // By default we assume that we cannot access the magnetometer
}
ICM_20948_Status_e ICM_20948::getMagnetometerData ( ICM_20948_AGMT_t* pagmt ){
return ICM_20948_Stat_NotImpl; // By default we assume that we cannot access the magnetometer
}
// direct read/write
ICM_20948_Status_e ICM_20948::read ( uint8_t reg, uint8_t* pdata, uint32_t len){
status = ICM_20948_execute_r( &_device, reg, pdata, len );
return status;
}
ICM_20948_Status_e ICM_20948::write ( uint8_t reg, uint8_t* pdata, uint32_t len){
status = ICM_20948_execute_w( &_device, reg, pdata, len );
return status;
}
byte ICM_20948_I2C::begin(bool fusion){
// Associate
_ad0 = ICM_20948_ARD_UNUSED_PIN;
_ad0val = false;
_addr = ICM_20948_I2C_ADDR_AD0;
if( _ad0val ){ _addr = ICM_20948_I2C_ADDR_AD1; }
// Set pinmodes
if(_ad0 != ICM_20948_ARD_UNUSED_PIN){ pinMode(_ad0, OUTPUT); }
// Set pins to default positions
if(_ad0 != ICM_20948_ARD_UNUSED_PIN){ digitalWrite(_ad0, _ad0val); }
if (!initI2C(100000)) return 0;
// Set up the serif
_serif.write = ICM_20948_write_I2C;
_serif.read = ICM_20948_read_I2C;
_serif.user = (void*)this; // refer to yourself in the user field
// Link the serif
_device._serif = &_serif;
// Perform default startup
status = startupDefault();
if( status != ICM_20948_Stat_Ok ){
return 0;
}
if (fusion && !quaterion) {
quaterion = new CQuaterion;
}
return 2;
}
ICM_20948_Status_e ICM_20948_I2C::startupMagnetometer ( void ){
// If using the magnetometer through passthrough:
i2cMasterPassthrough( true ); // Set passthrough mode to try to access the magnetometer (by default I2C master is disabled but you still have to enable the passthrough)
// Try to set up magnetometer
AK09916_CNTL2_Reg_t reg;
reg.MODE = AK09916_mode_cont_100hz;
ICM_20948_Status_e retval = writeMag( AK09916_REG_CNTL2, (uint8_t*)®, sizeof(AK09916_CNTL2_Reg_t) );
status = retval;
if(status == ICM_20948_Stat_Ok){
_has_magnetometer = true;
}
return status;
}
ICM_20948_Status_e ICM_20948_I2C::magWhoIAm( void ){
ICM_20948_Status_e retval = ICM_20948_Stat_Ok;
const uint8_t len = 2;
uint8_t whoiam[len];
retval = readMag( AK09916_REG_WIA1, whoiam, len );
status = retval;
if( retval != ICM_20948_Stat_Ok ){ return retval; }
if( (whoiam[0] == (MAG_AK09916_WHO_AM_I >> 8)) && ( whoiam[1] == (MAG_AK09916_WHO_AM_I & 0xFF)) ){
retval = ICM_20948_Stat_Ok;
status = retval;
return status;
}
retval = ICM_20948_Stat_WrongID;
status = retval;
return status;
}
bool ICM_20948_I2C::magIsConnected( void ){
if( magWhoIAm() != ICM_20948_Stat_Ok ){
return false;
}
return true;
}
ICM_20948_Status_e ICM_20948_I2C::getMagnetometerData ( ICM_20948_AGMT_t* pagmt ){
const uint8_t reqd_len = 9; // you must read all the way through the status2 register to re-enable the next measurement
uint8_t buff[reqd_len];
status = readMag( AK09916_REG_ST1, buff, reqd_len );
if( status != ICM_20948_Stat_Ok ){
return status;
}
pagmt->mag.axes.x = ((buff[2] << 8) | (buff[1] & 0xFF));
pagmt->mag.axes.y = ((buff[4] << 8) | (buff[3] & 0xFF));
pagmt->mag.axes.z = ((buff[6] << 8) | (buff[5] & 0xFF));
return status;
}
ICM_20948_Status_e ICM_20948_I2C::readMag( uint8_t reg, uint8_t* pdata, uint8_t len ){
// write sub-address
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MAG_AK09916_I2C_ADDR << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if (ret != ESP_OK) return ICM_20948_Stat_Err;
// read data
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MAG_AK09916_I2C_ADDR << 1 ) | READ_BIT, ACK_CHECK_EN);
if (len > 1) {
i2c_master_read(cmd, pdata, len - 1, ACK_VAL);
}
i2c_master_read_byte(cmd, pdata + len - 1, NACK_VAL);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_NoData;
}
ICM_20948_Status_e ICM_20948_I2C::writeMag( uint8_t reg, uint8_t* pdata, uint8_t len ){
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( MAG_AK09916_I2C_ADDR << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
i2c_master_write(cmd, pdata, len, ACK_CHECK_DIS);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
return ret == ESP_OK ? ICM_20948_Stat_Ok : ICM_20948_Stat_Err;
}
bool ICM_20948_I2C::read(float* acc, float* gyr, float* mag, float* tmp, ORIENTATION* ori)
{
if(!dataReady() || ICM_20948_get_agmt( &_device, &agmt ) != ICM_20948_Stat_Ok){
return false;
}
if( _has_magnetometer ){
getMagnetometerData( &agmt );
}
if (acc) {
acc[0] = accX() / 1000;
acc[1] = accY() / 1000;
acc[2] = accZ() / 1000;
}
if (gyr) {
gyr[0] = gyrX();
gyr[1] = gyrY();
gyr[2] = gyrZ();
}
if (mag) {
mag[0] = magX();
mag[1] = magY();
mag[2] = magZ();
}
if (tmp) {
*tmp = temp();
}
if (quaterion && acc && gyr && mag) {
quaterion->MadgwickQuaternionUpdate(acc[0], acc[1], acc[2], gyr[0]*PI/180.0f, gyr[1]*PI/180.0f, gyr[2]*PI/180.0f, mag[0], mag[1], mag[2]);
quaterion->getOrientation(ori);
}
return true;
}